

Contents

Contributors XV

Preface XXI

A Personal Foreword XXIII

Part I The Concept of Fragment-based Drug Discovery 1

1	The Role of Fragment-based Discovery in Lead Finding	3
	<i>Roderick E. Hubbard</i>	
1.1	Introduction	3
1.2	What is FBLD?	4
1.3	FBLD: Current Practice	5
1.3.1	Using Fragments: Conventional Targets	5
1.3.2	Using Fragments: Unconventional Targets	13
1.4	What do Fragments Bring to Lead Discovery?	14
1.5	How did We Get Here?	16
1.5.1	Evolution of the Early Ideas and History	16
1.5.2	What has Changed Since the First Book was Published in 2006?	16
1.6	Evolution of the Methods and Their Application Since 2005	19
1.6.1	Developments in Fragment Libraries	21
1.6.2	Fragment Hit Rate and Druggability	22
1.6.3	Developments in Fragment Screening	23
1.6.4	Ways of Evolving Fragments	23
1.6.5	Integrating Fragments Alongside Other Lead-Finding Strategies	23
1.6.6	Fragments Can be Selective	24
1.6.7	Fragment Binding Modes	25
1.6.8	Fragments, Chemical Space, and Novelty	27
1.7	Current Application and Impact	27
1.8	Future Opportunities	28
	References	29

2	Selecting the Right Targets for Fragment-Based Drug Discovery	<i>37</i>
	<i>Thomas G. Davies, Harren Jhoti, Puja Pathuri, and Glyn Williams</i>	
2.1	Introduction	37
2.2	Properties of Targets and Binding Sites	39
2.3	Assessing Druggability	41
2.4	Properties of Ligands and Drugs	42
2.5	Case Studies	43
2.5.1	Case Study 1: Inhibitors of Apoptosis Proteins (IAPs)	44
2.5.2	Case Study 2: HCV-NS3	46
2.5.3	Case Study 3: PKM2	47
2.5.4	Case Study 4: Soluble Adenylate Cyclase	49
2.6	Conclusions	50
	References	51
3	Enumeration of Chemical Fragment Space	<i>57</i>
	<i>Jean-Louis Raymond, Ricardo Visini, and Mahendra Awale</i>	
3.1	Introduction	57
3.2	The Enumeration of Chemical Space	58
3.2.1	Counting and Sampling Approaches	58
3.2.2	Enumeration of the Chemical Universe Database GDB	58
3.2.3	GDB Contents	59
3.3	Using and Understanding GDB	61
3.3.1	Drug Discovery	61
3.3.2	The MQN System	62
3.3.3	Other Fingerprints	63
3.4	Fragments from GDB	65
3.4.1	Fragment Replacement	65
3.4.2	Shape Diversity of GDB Fragments	66
3.4.3	Aromatic Fragments from GDB	68
3.5	Conclusions and Outlook	68
	Acknowledgment	69
	References	69
4	Ligand Efficiency Metrics and their Use in Fragment Optimizations	<i>75</i>
	<i>György G. Ferenczy and György M. Keserű</i>	
4.1	Introduction	75
4.2	Ligand Efficiency	75
4.3	Binding Thermodynamics and Efficiency Indices	78
4.4	Enthalpic Efficiency Indices	81
4.5	Lipophilic Efficiency Indices	83
4.6	Application of Efficiency Indices in Fragment-Based Drug Discovery Programs	88
4.7	Conclusions	94
	References	95

Part II Methods and Approaches for Fragment-based Drug Discovery 99

5 Strategies for Fragment Library Design 101
Justin Bower, Angelo Pugliese, and Martin Drysdale

5.1 Introduction 101
5.2 Aims 102
5.3 Progress 102
5.3.1 BDDP Fragment Library Design: Maximizing Diversity 103
5.3.2 Assessing Three-Dimensionality 103
5.3.3 3DFrag Consortium 104
5.3.4 Commercial Fragment Space Analysis 105
5.3.5 BDDP Fragment Library Design 108
5.3.6 Fragment Complexity 111
5.3.6.1 Diversity-Oriented Synthesis-Derived Fragment-Like Molecules 113
5.4 Future Plans 114
5.5 Summary 116
5.6 Key Achievements 116
References 116

6 The Synthesis of Biophysical Methods In Support of Robust Fragment-Based Lead Discovery 119
Ben J. Davis and Anthony M. Giannetti

6.1 Introduction 119
6.2 Fragment-Based Lead Discovery on a Difficult Kinase 121
6.3 Application of Orthogonal Biophysical Methods to Identify and Overcome an Unusual Ligand: Protein Interaction 127
6.4 Direct Comparison of Orthogonal Screening Methods Against a Well-Characterized Protein System 131
6.5 Conclusions 135
References 136

7 Differential Scanning Fluorimetry as Part of a Biophysical Screening Cascade 139
Duncan E. Scott, Christina Spry, and Chris Abell

7.1 Introduction 139
7.2 Theory 140
7.2.1 Equilibria are Temperature Dependent 140
7.2.2 Thermodynamics of Protein Unfolding 142
7.2.3 Exact Mathematical Solutions to Ligand-Induced Thermal Shifts 143
7.2.4 Ligand Binding and Protein Unfolding Thermodynamics Contribute to the Magnitude of Thermal Shifts 145
7.2.5 Ligand Concentration and the Magnitude of Thermal Shifts 147
7.2.6 Models of Protein Unfolding Equilibria and Ligand Binding 148

7.2.7	Negative Thermal Shifts and General Confusions	150
7.2.8	Lessons Learnt from Theoretical Analysis of DSF	151
7.3	Practical Considerations for Applying DSF in Fragment-Based Approaches	152
7.4	Application of DSF to Fragment-Based Drug Discovery	154
7.4.1	DSF as a Primary Enrichment Technique	154
7.4.2	DSF Compared with Other Hit Identification Techniques	159
7.4.3	Pursuing Destabilizing Fragment Hits	166
7.4.4	Lessons Learnt from Literature Examples of DSF in Fragment-Based Drug Discovery	168
7.5	Concluding Remarks	169
	Acknowledgments	169
	References	170
8	Emerging Technologies for Fragment Screening	<i>173</i>
	<i>Sten Ohlson and Minh-Dao Duong-Thi</i>	
8.1	Introduction	173
8.2	Emerging Technologies	175
8.2.1	Weak Affinity Chromatography	175
8.2.1.1	Introduction	175
8.2.1.2	Theory	177
8.2.1.3	Fragment Screening	179
8.2.2	Mass Spectrometry	185
8.2.2.1	Introduction	185
8.2.2.2	Theory	186
8.2.2.3	Applications	186
8.2.3	Microscale Thermophoresis	187
8.2.3.1	Introduction	187
8.2.3.2	Theory	189
8.2.3.3	Applications	189
8.3	Conclusions	189
	Acknowledgments	191
	References	191
9	Computational Methods to Support Fragment-based Drug Discovery	<i>197</i>
	<i>Laurie E. Grove, Sandor Vajda, and Dima Kozakov</i>	
9.1	Computational Aspects of FBDD	197
9.2	Detection of Ligand Binding Sites and Binding Hot Spots	198
9.2.1	Geometry-based Methods	199
9.2.2	Energy-based Methods	201
9.2.3	Evolutionary and Structure-based Methods	202
9.2.4	Combination Methods	202
9.3	Assessment of Druggability	203
9.4	Generation of Fragment Libraries	205

9.4.1	Known Drugs	206
9.4.2	Natural Compounds	207
9.4.3	Novel Scaffolds	208
9.5	Docking Fragments and Scoring	209
9.5.1	Challenges of Fragment Docking	209
9.5.2	Examples of Fragment Docking	210
9.6	Expansion of Fragments	212
9.7	Outlook	214
	References	214
10	Making FBDD Work in Academia	223
	<i>Stacie L. Bulfer, Frantz Jean-Francois, and Michelle R. Arkin</i>	
10.1	Introduction	223
10.2	How Academic and Industry Drug Discovery Efforts Differ	225
10.3	The Making of a Good Academic FBDD Project	226
10.4	FBDD Techniques Currently Used in Academia	228
10.4.1	Nuclear Magnetic Resonance	229
10.4.2	X-Ray Crystallography	230
10.4.3	Surface Plasmon Resonance/Bilayer Interferometry	231
10.4.4	Differential Scanning Fluorimetry	232
10.4.5	Isothermal Titration Calorimetry	232
10.4.6	Virtual Screening	232
10.4.7	Mass Spectrometry	233
10.4.7.1	Native MS	233
10.4.7.2	Site-Directed Disulfide Trapping (Tethering)	234
10.4.8	High-Concentration Bioassays	234
10.5	Project Structures for Doing FBDD in Academia	235
10.5.1	Targeting p97: A Chemical Biology Consortium Project	235
10.5.2	Targeting Caspase-6: An Academic–Industry Partnership	236
10.6	Conclusions and Perspectives	239
	References	240
11	Site-Directed Fragment Discovery for Allostery	247
	<i>T. Justin Rettenmaier, Sean A. Hudson, and James A. Wells</i>	
11.1	Introduction	247
11.2	Caspases	249
11.2.1	Tethered Allosteric Inhibitors of Executioner Caspases-3 and -7	249
11.2.2	Tethering Inflammatory Caspase-1	250
11.2.3	Tethered Allosteric Inhibitors of Caspase-5	251
11.2.4	General Allosteric Regulation at the Caspase Dimer Interface	252
11.2.5	Using Disulfide Fragments as “Chemi-Locks” to Generate Conformation-Specific Antibodies	253
11.3	Tethering K-Ras(G12C)	254
11.4	The Master Transcriptional Coactivator CREB Binding Protein	256

11.4.1	Tethering to Find Stabilizers of the KIX Domain of CBP	256
11.4.2	Dissecting the Allosteric Coupling between Binding Sites on KIX	257
11.4.3	Rapid Identification of pKID-Competitive Fragments for KIX	258
11.5	Tethering Against the PIF Pocket of Phosphoinositide-Dependent Kinase 1 (PDK1)	259
11.6	Tethering Against GPCRs: Complement 5A Receptor	261
11.7	Conclusions and Future Directions	263
	References	264
12	Fragment Screening in Complex Systems	267
	<i>Miles Congreve and John A. Christopher</i>	
12.1	Introduction	267
12.2	Fragment Screening and Detection of Fragment Hits	268
12.2.1	Fragment Screening Using NMR Techniques	270
12.2.2	Fragment Screening Using Surface Plasmon Resonance	271
12.2.3	Fragment Screening Using Capillary Electrophoresis	272
12.2.4	Fragment Screening Using Radioligand and Fluorescence-Based Binding Assays	273
12.2.5	Ion Channel Fragment Screening	275
12.3	Validating Fragment Hits	276
12.4	Fragment to Hit	279
12.4.1	Fragment Evolution	280
12.4.2	Fragment Linking	281
12.5	Fragment to Lead Approaches	281
12.5.1	Fragment Evolution	282
12.5.2	Fragment Linking	284
12.6	Perspective and Conclusions	285
	Acknowledgments	287
	References	287
13	Protein-Templated Fragment Ligation Methods: Emerging Technologies in Fragment-Based Drug Discovery	293
	<i>Mike Jaegle, Eric Nawrotzky, Ee Lin Wong, Christoph Arkona, and Jörg Rademann</i>	
13.1	Introduction: Challenges and Visions in Fragment-Based Drug Discovery	293
13.2	Target-Guided Fragment Ligation: Concepts and Definitions	294
13.3	Reversible Fragment Ligation	295
13.3.1	Dynamic Reversible Fragment Ligation Strategies	295
13.3.2	Chemical Reactions Used in Dynamic Fragment Ligations	296
13.3.3	Detection Strategies in Dynamic Fragment Ligations	299
13.3.4	Applications of Dynamic Fragment Ligations in FBDD	301
13.4	Irreversible Fragment Ligation	311
13.4.1	Irreversible Fragment Ligation Strategies: Pros and Cons	311

13.4.2	Detection in Irreversible Fragment Ligation	311
13.4.3	Applications of Irreversible Fragment Ligations in FBDD	313
13.5	Fragment Ligations Involving Covalent Reactions with Proteins	316
13.6	Conclusions and Future Outlook: How Far did We Get and What will be Possible?	319
	References	320

Part III Successes from Fragment-based Drug Discovery 327

14 BACE Inhibitors 329

Daniel F. Wyss, Jared N. Cumming, Corey O. Strickland, and Andrew W. Stamford

14.1 Introduction 329

14.2 FBDD Efforts on BACE1 333

14.2.1 Fragment Hit Identification, Validation, and Expansion 333

14.2.2 Fragment Optimization 333

14.2.3 From a Key Pharmacophore to Clinical Candidates 340

14.3 Conclusions 346

References 346

15 Epigenetics and Fragment-Based Drug Discovery 355

Aman Iqbal and Peter J. Brown

15.1 Introduction 355

15.2 Epigenetic Families and Drug Targets 357

15.3 Epigenetics Drug Discovery Approaches and Challenges 358

15.4 FBDD Case Studies 359

15.4.1 BRD4 (Bromodomain) 360

15.4.2 EP300 (Bromodomain) 363

15.4.3 ATAD2 (Bromodomain) 364

15.4.4 BAZ2B (Bromodomain) 364

15.4.5 SIRT2 (Histone Deacetylase) 365

15.4.6 Next-Generation Epigenetic Targets: The “Royal Family” and Histone Demethylases 366

15.5 Conclusions 367

Abbreviations 368

References 368

16 Discovery of Inhibitors of Protein-Protein Interactions Using

Fragment-Based Methods 371

Feng Wang and Stephen W. Fesik

16.1 Introduction 371

16.2 Fragment-Based Strategies for Targeting PPIs 372

16.2.1 Fragment Library Construction 372

16.2.2 NMR-Based Fragment Screening Methods 373

16.2.3	Structure Determination of Complexes	374
16.2.4	Structure-Guided Hit-to-Lead Optimization	375
16.3	Recent Examples from Our Laboratory	376
16.3.1	Discovery of RPA Inhibitors	377
16.3.2	Discovery of Potent Mcl-1 Inhibitors	378
16.3.3	Discovery of Small Molecules that Bind to K-Ras	379
16.4	Summary and Conclusions	382
	Acknowledgments	383
	References	384
17	Fragment-Based Discovery of Inhibitors of Lactate Dehydrogenase A	391
	<i>Alexander L. Breeze, Richard A. Ward, and Jon Winter</i>	
17.1	Aerobic Glycolysis, Lactate Metabolism, and Cancer	391
17.2	Lactate Dehydrogenase as a Cancer Target	392
17.3	“Ligandability” Characteristics of the Cofactor and Substrate Binding Sites in LDHA	394
17.4	Previously Reported LDH Inhibitors	395
17.5	Fragment-Based Approach to LDHA Inhibition at AstraZeneca	398
17.5.1	High-Throughput Screening Against LDHA	398
17.5.2	Rationale and Strategy for Exploration of Fragment-Based Approaches	399
17.5.3	Development of Our Biophysical and Structural Biology Platform	400
17.5.4	Elaboration of Adenine Pocket Fragments	404
17.5.5	Screening for Fragments Binding in the Substrate and Nicotinamide Pockets	405
17.5.6	Reaching out Across the Void	407
17.5.7	Fragment Linking and Optimization	408
17.6	Fragment-Based LDHA Inhibitors from Other Groups	410
17.6.1	Nottingham	410
17.6.2	Ariad	413
17.7	Conclusions and Future Perspectives	417
	References	419
18	FBDD Applications to Kinase Drug Hunting	425
	<i>Gordon Saxty</i>	
18.1	Introduction	425
18.2	Virtual Screening and X-ray for PI3K	426
18.3	High-Concentration Screening and X-ray for Rock1/2	427
18.4	Surface Plasmon Resonance for MAP4K4	428
18.5	Weak Affinity Chromatography for GAK	429
18.6	X-ray for CDK 4/6	430
18.7	High-Concentration Screening, Thermal Shift, and X-ray for CHK2	432
18.8	Virtual Screening and Computational Modeling for AMPK	433
18.9	High-Concentration Screening, NMR, and X-ray FBDD for PDK1	434

18.10 Tethering Mass Spectrometry and X-ray for PDK1 435
18.11 NMR and X-ray Case Study for Abl (Allosteric) 436
18.12 Review of Current Kinase IND's and Conclusions 437
References 442

19 An Integrated Approach for Fragment-Based Lead Discovery: Virtual, NMR, and High-Throughput Screening Combined with Structure-Guided Design. Application to the Aspartyl Protease Renin. 447
Simon Rüdisser, Eric Vangrevelinghe, and Jürgen Maibaum

19.1 Introduction 447
19.2 Renin as a Drug Target 449
19.3 The Catalytic Mechanism of Renin 451
19.4 Virtual Screening 452
19.5 Fragment-Based Lead Finding Applied to Renin and Other Aspartyl Proteases 455
19.6 Renin Fragment Library Design 464
19.7 Fragment Screening by NMR T1ρ Ligand Observation 469
19.8 X-Ray Crystallography 473
19.9 Renin Fragment Hit-to-Lead Evolution 475
19.10 Integration of Fragment Hits and HTS Hits 476
19.11 Conclusions 479
References 480

Index 487