

Contents

Preface — V

1	Emulsions: Formation, stability, industrial applications — 1
1.1	General introduction — 1
1.2	Nature of the Emulsifier — 1
1.3	Structure of the system — 2
1.4	Breakdown processes in emulsions — 3
1.5	Creaming and sedimentation — 4
1.6	Flocculation — 4
1.7	Ostwald ripening (disproportionation) — 4
1.8	Coalescence — 5
1.9	Phase inversion — 5
1.10	Industrial applications of emulsions — 5
1.11	Book outline — 6
2	Thermodynamics of emulsion formation and breakdown — 9
2.1	The interface (Gibbs dividing line) — 9
2.2	Thermodynamics of emulsion formation and breakdown — 11
3	Interaction forces between emulsion droplets — 15
3.1	Van der Waals attraction — 15
3.2	Electrostatic repulsion — 17
3.3	Steric repulsion — 21
3.3.1	Mixing interaction G_{mix} — 23
3.3.2	Elastic interaction G_{el} — 24
3.3.3	Total energy of interaction — 25
3.3.4	Criteria for effective steric stabilization — 26
4	Adsorption of surfactants at the oil/water interface — 29
4.1	Introduction — 29
4.2	The Gibbs adsorption isotherm — 29
4.3	Equation of state approach — 32
4.4	The Langmuir, Szyzskowski and Frumkin equations — 34
4.5	Effectiveness of surfactant adsorption at the liquid/liquid interface — 35
4.6	Efficiency of adsorption of surfactant at the liquid/liquid interface — 35
4.7	Adsorption from mixtures of two surfactants — 37
4.8	Adsorption of macromolecules — 38

4.9	Interfacial tension measurements — 40
4.9.1	The Wilhelmy plate method — 40
4.9.2	The pendent drop method — 41
4.9.3	Sessile drop method — 42
4.9.4	The Du Nouy ring method — 43
4.9.5	The drop volume (weight) method — 43
4.9.6	The spinning drop method — 44
5	Mechanism of emulsification and the role of the emulsifier — 47
5.1	Introduction — 47
5.2	Mechanism of emulsification — 47
5.3	Role of surfactants in emulsion formation — 50
5.3.1	Role of surfactants in reduction of droplet size — 50
5.3.2	Role of surfactants in droplet deformation — 53
6	Methods of emulsification — 59
6.1	Introduction — 59
6.2	Rotor-stator mixers — 59
6.2.1	Toothed devices — 59
6.2.2	Batch radial discharge mixers — 60
6.2.3	Design and arrangement — 61
6.3	Flow regimes — 63
6.3.1	Laminar flow — 64
6.3.2	Turbulent flow — 66
6.4	Membrane emulsification — 69
6.5	Formulation variables and comparison of various emulsification methods — 70
7	Selection of emulsifiers — 73
7.1	Introduction — 73
7.2	The hydrophilic-lipophile balance (HLB) concept — 76
7.3	The phase inversion temperature (PIT) concept — 82
7.4	The cohesive energy ratio (CER) concept — 85
7.5	The critical packing parameter (CPP) for emulsion selection — 86
7.6	Stabilisation by solid particles (Pickering emulsions) — 89
8	Creaming/sedimentation of emulsions and its prevention — 95
8.1	Introduction — 95
8.2	Creaming or sedimentation rates — 96
8.2.1	Very dilute emulsions ($\phi < 0.01$) — 96
8.2.2	Moderately concentrated emulsions ($0.2 > \phi > 0.1$) — 97
8.2.3	Concentrated emulsions ($\phi > 0.2$) — 98

8.3	Properties of a creamed layer — 98
8.4	Prevention of creaming or sedimentation — 99
8.4.1	Matching density of oil and aqueous phases — 99
8.4.2	Reduction of droplet size — 99
8.4.3	Use of "thickeners" — 100
8.4.4	Reduction of creaming/sedimentation of emulsions using associative thickeners — 103
8.4.5	Controlled flocculation — 106
8.4.6	Depletion flocculation — 107
8.4.7	Use of "inert" fine particles — 109
8.4.8	Use of mixtures of polymers and finely divided particulate solids — 110
8.4.9	Use of liquid crystalline phases — 111
9	Flocculation of emulsions — 113
9.1	Introduction — 113
9.2	Mechanism of emulsion flocculation — 113
9.2.1	Flocculation of electrostatically stabilised emulsions — 114
9.2.2	Flocculation of sterically stabilised emulsions — 118
9.2.3	Weak flocculation of sterically stabilised emulsions — 122
9.2.4	Depletion flocculation — 123
9.2.5	Bridging flocculation by polymers and polyelectrolytes — 124
9.3	General rules for reducing (eliminating) flocculation — 127
9.3.1	Charge stabilised emulsions, e.g. using ionic surfactants — 127
9.3.2	Sterically stabilised emulsions — 127
10	Ostwald ripening in emulsions and its prevention — 129
10.1	Driving force for Ostwald ripening — 129
10.2	Kinetics of Ostwald ripening — 130
10.3	Reduction of Ostwald ripening — 134
10.3.1	Addition of a small proportion of highly insoluble oil — 134
10.3.2	Modification of the interfacial layer for reduction of Ostwald ripening — 136
10.4	Influence of initial droplet size of emulsions on the Ostwald ripening rate — 137
11	Emulsion coalescence and its prevention — 141
11.1	Introduction — 141
11.2	Forces across liquid films — 141
11.2.1	Disjoining pressure approach — 143
11.2.2	Interfacial tension of liquid films — 143
11.3	Film rupture — 144
11.4	Rate of coalescence between droplets — 146

11.5	Reduction of coalescence — 151
11.5.1	Use of mixed surfactant films — 151
12	Phase inversion and its prevention — 161
12.1	Introduction — 161
12.2	Catastrophic inversion — 161
12.3	Transitional inversion — 163
12.4	The phase inversion temperature (PIT) — 165
13	Characterization of emulsions and assessment of their stability — 173
13.1	Introduction — 173
13.2	Assessment of the structure of the liquid/liquid interface — 174
13.2.1	Double layer investigation — 174
13.2.2	Measurement of surfactant and polymer adsorption — 176
13.3	Assessment of creaming/sedimentation of emulsions — 177
13.4	Assessment of flocculation, Ostwald ripening and coalescence — 180
13.4.1	Optical microscopy — 180
13.4.2	Electron microscopy — 182
13.4.3	Confocal laser scanning microscopy (CLSM) — 184
13.5	Scattering techniques — 184
13.5.1	Light-scattering techniques — 184
13.5.2	Turbidity measurements — 185
13.5.3	Light diffraction techniques — 186
13.5.4	Dynamic light scattering – photon correlation spectroscopy (PCS) — 188
13.5.5	Back-scattering techniques — 191
13.6	Measurement of the rate of creaming or sedimentation — 191
13.7	Measurement of rate of flocculation — 192
13.8	Measurement of incipient flocculation — 193
13.9	Measurement of Ostwald ripening — 193
13.10	Measurement of the rate of coalescence — 194
13.11	Bulk properties of emulsions. Equilibrium cream or sediment volume (or height) — 194
14	Industrial applications of emulsions — 197
14.1	Introduction — 197
14.2	Food emulsions — 197
14.2.1	Food grade surfactants — 198
14.2.2	Surfactant association structures, micro-emulsions and emulsions in food — 207
14.3	Emulsions in cosmetics and personal care formulations — 209
14.4	Emulsions in pharmacy — 217

- 14.5 **Emulsions in agrochemicals — 219**
- 14.6 **Rolling oil and lubricant emulsions — 220**

Index — 223