## Contents

| Editor's Preface   | XVII    |
|--------------------|---------|
| List of Contribute | ors XIX |

| 1    | Introduction 1<br>Andriy M. Gusak                                                                      |
|------|--------------------------------------------------------------------------------------------------------|
| 2    | Nonequilibrium Vacancies and Diffusion-Controlled Processes at Nanolevel 11 Andriy M. Gusak            |
| 2.1  | Introduction 11                                                                                        |
| 2.2  | Beyond Darken's Approximation 12                                                                       |
| 2.3  | The Model for Regular Chains of Ideal Vacancies Sinks/Sources 17                                       |
| 2.4  | Description of Interdiffusion in Alloys at Random Power of Distributed Vacancy Sinks 20                |
| 2.5  | Linear Phase Growth and Nonequilibrium Vacancies 22                                                    |
| 2.6  | Intermetallic Layer Growth at Imposed Current and Nonequilibrium  Vacancies Damping Effect 25          |
| 2.7  | Possible Role of Nonequilibrium Vacancies in Spinodal Decomposition 26                                 |
| 2.8  | Nanoshell Collapse 29                                                                                  |
| 2.9  | The Role of Nonequilibrium Vacancies in Diffusion Coarsening 32                                        |
| 2.10 | Conclusions 34                                                                                         |
|      | References 34                                                                                          |
| 3    | Diffusive Phase Competition: Fundamentals 37  Andriy M. Gusak                                          |
| 3.1  | Introduction 37                                                                                        |
| 3.2  | Standard Model and the Anomaly Problem 37                                                              |
| 3.3  | Criteria of Phase Growth and Suppression: Approximation of Unlimited Nucleation 45                     |
| 3.4  | Incubation Time 47                                                                                     |
| 3.5  | Should We Rely Upon the Ingenuity of Nature? Nucleation Problems and Meta-Quasi-Equilibrium Concept 49 |



| VIII   Contents |                                                                                                 |
|-----------------|-------------------------------------------------------------------------------------------------|
| 3.6             | Suppression of an Intermediate Phase by Solid Solutions 52                                      |
| 3.6.1           | Unlimited Nucleation 53                                                                         |
| 3.6.2           | Finite Rate of Nuclei Formation 54                                                              |
| 3.7             | Phase Competition in a Model of Divided Couple 55                                               |
|                 | References 59                                                                                   |
| 4               | Nucleation in a Concentration Gradient 61                                                       |
|                 | Andriy M. Gusak                                                                                 |
| 4.1             | Introduction 61                                                                                 |
| 4.2             | Nucleation in Nonhomogeneous Systems: General Approach 63                                       |
| 4.3             | Thermodynamics of the Polymorphic Mode of Nucleation in a Concentration Gradient 65             |
| 4.3.1           | Homogeneous Nucleation: General Relations 65                                                    |
| 4.3.2           | Spherical Nuclei 66                                                                             |
| 4.3.3           | Ellipsoidal Nuclei 68                                                                           |
| 4.3.4           | MC Simulations of the Shape of the Nucleus 70                                                   |
| 4.3.5           | Stress Effects 71                                                                               |
| 4.4             | Thermodynamics of the Transversal Mode of Nucleation in a                                       |
|                 | Concentration Gradient 74                                                                       |
| 4.4.1           | Homogeneous Nucleation: General Relations 74                                                    |
| 4.5             | Thermodynamics of the Longitudinal Mode of Nucleation in a                                      |
|                 | Concentration Gradient 79                                                                       |
| 4.6             | Nucleation in Systems with Limited Metastable Solubility 81                                     |
| 4.6.1           | Nucleation of a Line Compound at the Interface During                                           |
|                 | Interdiffusion 82                                                                               |
| 4.6.2           | Nucleation in between Dilute Solutions 86                                                       |
| 4.6.3           | Nucleation in between Two Growing Intermediate Phase Layers 86                                  |
| 4.6.4           | Nucleation in between a Growing Intermediate Phase and a Dilute                                 |
|                 | Solution 88                                                                                     |
| 4.6.5           | Application to Particular Systems 91                                                            |
| 4.7             | Conclusions 95                                                                                  |
|                 | References 97                                                                                   |
| 5               | Modeling of the Initial Stages of Reactive Diffusion 99 Mykola O. Pasichnyy and Andriy M. Gusak |
| 5.1             | Introduction 99                                                                                 |
| 5.2             | First Phase Nucleation Delay in Al-Co Thin Films 100                                            |
| 5.2.1           | The Problem of Nucleation in a Concentration Gradient Field 101                                 |
| 5.2.2           | Basic Model 102                                                                                 |
| 5.2.3           | Transversal Mode 105                                                                            |
| 5.2.4           | Polymorphic Mode 107                                                                            |
| 5.2.4.1         | Polymorphic Mode without Shape Optimization 108                                                 |
| 5.2.4.2         | Polymorphic Mode with Shape Optimization 109                                                    |
| 5.2.5           | Discussion and Conclusions 110                                                                  |
|                 |                                                                                                 |

| 5.3     | Kinetics of Lateral Growth of Intermediate Phase Islands at the Initial                                           |  |
|---------|-------------------------------------------------------------------------------------------------------------------|--|
|         | Stage of Reactive Diffusion 112                                                                                   |  |
| 5.3.1   | Problem Formulation 112                                                                                           |  |
| 5.3.2   | Physical Model 114                                                                                                |  |
| 5.3.3   | Numerical Results 116                                                                                             |  |
| 5.3.4   | Analytical Solution for the Steady State 117                                                                      |  |
| 5.3.5   | Asymptotic Thickness of an Island 118                                                                             |  |
| 5.3.6   | Estimates 119                                                                                                     |  |
| 5.3.7   | Conclusions 121                                                                                                   |  |
| 5.4     | MC-Scheme of Reactive Diffusion 121                                                                               |  |
| 5.4.1   | Formulation of the Problem 121                                                                                    |  |
| 5.4.2   | The Model 122                                                                                                     |  |
| 5.4.3   | Nucleation of Phase $A_2B_1$ at the Interface $A-A_1B_2$ 124                                                      |  |
| 5.4.4   | Competitive Nucleation of Phases A <sub>1</sub> B <sub>2</sub> and A <sub>2</sub> B <sub>1</sub> at the Interface |  |
|         | A-B 129                                                                                                           |  |
| 5.4.5   | Lateral Competition 131                                                                                           |  |
| 5.4.6   | Conclusions 131                                                                                                   |  |
|         | References 132                                                                                                    |  |
|         | Further Reading 133                                                                                               |  |
| 6       | Flux-Driven Morphology Evolution 135                                                                              |  |
|         | Andriy M. Gusak                                                                                                   |  |
| 6.1     | Introduction 135                                                                                                  |  |
| 6.2     | Grain Growth and Ripening: Fundamentals 136                                                                       |  |
| 6.2.1   | Main Approximations of the LSW Approach 136                                                                       |  |
| 6.2.2   | Traditional Approaches to the Description of Grain Growth 138                                                     |  |
| 6.3     | Alternative Derivation of the Asymptotic Solution of the LSW Theory 139                                           |  |
| 6.4     | Flux-Driven Ripening at Reactive Diffusion 142                                                                    |  |
| 6.4.1   | Experimental Results 143                                                                                          |  |
| 6.4.2   | Basic Approximations 144                                                                                          |  |
| 6.4.3   | Basic Equations 145                                                                                               |  |
| 6.5     | Flux-Driven Grain Growth in Thin Films during Deposition 148                                                      |  |
| 6.5.1   | "Mushroom Effect" on the Surface of a Pair of Grains: Deterministic Approach 150                                  |  |
| 6.5.2   | Analysis of Flux-Driven Grain Growth 151                                                                          |  |
| 6.5.3   | Stochastic Approach 154                                                                                           |  |
| 6.5.4   | Monte Carlo Simulation of Flux-Driven Grain Growth 155                                                            |  |
| 6.5.5   | Lateral Grain Growth in Aluminum Nanofilm during Deposition 156                                                   |  |
| 6.5.5.1 | Hillert's Model 160                                                                                               |  |
| 6.5.5.2 | Models Leading to a Rayleigh Distribution 161                                                                     |  |
| 6.5.5.3 | Pair Interaction Model (Di Nunzio) 161                                                                            |  |
| 6.6     | Flux-Induced Instability and Bifurcations of Kirkendall Planes 163                                                |  |
| 6.6.1   | Kirkendall Effect and Velocity Curve 164                                                                          |  |
| 6.6.2   | Stable and Unstable K-Planes 165                                                                                  |  |

| x | Contents |                                                                    |
|---|----------|--------------------------------------------------------------------|
|   | 6.6.3    | Experimental Results 166                                           |
|   | 6.6.4    | General Instability Criterion 168                                  |
|   | 6.6.5    | Estimation of Markers' Distributions Near the Virtual K-Plane 169  |
|   | 6.6.6    | Spatial Distribution of Markers 170                                |
|   | 6.6.7    | Possible Alternative to the Multilayer Method 171                  |
|   | 6.7      | Electromigration-Induced Grain Rotation in Anisotropic Conducting  |
|   |          | Beta Tin 173                                                       |
|   | 6.8      | Thermomigration in Eutectic Two-Phase Structures 178               |
|   | 6.8.1    | Thermomigration Induced Back Stress in Two-Phase Mixtures 183      |
|   | 6.8.2    | Thermomigration-Driven Kirkendall Effect in Binary Mixtures 184    |
|   | 6.8.3    | Stochastic Tendencies in Thermomigration 185                       |
|   |          | References 186                                                     |
|   | 7        | Nanovoid Evolution 189                                             |
|   |          | Tatyana V. Zaporozhets and Andriy M. Gusak                         |
|   | 7.1      | Introduction 189                                                   |
|   | 7.2      | Kinetic Analysis of the Instability of Hollow Nanoparticles 191    |
|   | 7.2.1    | Introduction 191                                                   |
|   | 7.2.2    | Mechanism of Nanoshell Shrinkage 192                               |
|   | 7.2.3    | Models of Nanovoid Shrinkage 194                                   |
|   | 7.2.3.1  | Model 1: Shrinkage of Pure Element Nanoshells 195                  |
|   | 7.2.3.2  | Model 2: Shrinkage of a Binary Compound Nanoshell with Steady      |
|   |          | State Approximation for Both Vacancies and B Species 197           |
|   | 7.2.3.3  | Model 3: Steady State and Non-Steady State Vacancies for           |
|   |          | Component B 200                                                    |
|   | 7.2.3.4  | Model 4: Non-Steady State Vacancies and Atoms 204                  |
|   | 7.2.4    | Segregation of Pure B at the Internal Surface 205                  |
|   | 7.2.5    | Kinetic Monte Carlo Simulation of Shrinkage of a Nanoshell 206     |
|   | 7.2.5.1  | Model 1MC: Pure B-Shell in Vacuum 207                              |
|   | 7.2.5.2  | Model 2MC: Ordered IMC Nanoshell in Vacuum 208                     |
|   | 7.2.6    | Influence of Vacancy Segregation on Nanoshell Shrinkage 208        |
|   | 7.2.7    | Summary 215                                                        |
|   | 7.3      | Formation of Compound Hollow Nanoshells 216                        |
|   | 7.3.1    | Introduction 216                                                   |
|   | 7.3.2    | Model of Nanoshell Formation 216                                   |
|   | 7.3.3    | Simplified Analysis of the Competition Between "Kirkendall-Driven" |
|   |          | and "Curvature-Driven" Effects 218                                 |
|   | 7.3.4    | Rigorous Kinetic Analysis 220                                      |
|   | 7.3.5    | Results and Discussion 225                                         |
|   | 7.3.6    | Summary 228                                                        |
|   | 7.4      | Hollow Nanoshell Formation and Collapse in One Run: Model for a    |
|   |          | Solid Solution 229                                                 |
|   | 7.4.1    | Introduction 229                                                   |
|   | 7.4.2    | Shrinkage 229                                                      |

| 7.4.3   | Formation of a Hollow Nanoshell from Core–Shell Structure without the Influence of Ambient Atmosphere 233      |  |
|---------|----------------------------------------------------------------------------------------------------------------|--|
| 7.4.4   | Results of the Phenomenological Model 234                                                                      |  |
| 7.4.5   | Monte Carlo Simulation of the Vacancy Subsystem Evolution in the Structure "Core–Shell" 238                    |  |
| 7.4.5.1 | Formation of a NanoShell in a MC simulation 239                                                                |  |
| 7.4.5.2 | Crossover from Formation to Collapse 239                                                                       |  |
| 7.4.5.3 | Shrinkage and Segregation Kinetics in an MC Simulation 241                                                     |  |
| 7.4.6   | Summary 241                                                                                                    |  |
| 7.5     | Void Migration in Metallic Interconnects 245                                                                   |  |
| 7.5.1   | Hypotheses and Experiments 245                                                                                 |  |
| 7.5.2   | The Model 248                                                                                                  |  |
| 7.5.3   | Results 249                                                                                                    |  |
| 7.5.3.1 | Migration of Voids in Bulk Cu and Determination of the Calibration<br>Factor between MCS and Real Time 249     |  |
| 7.5.3.2 | Void Migration Along the Metal/Dielectric Interface 250                                                        |  |
| 7.5.4   | Simplified Analytical Models of Trapping at the GBs and at the GB Junctions 253                                |  |
| 7.5.5   | Summary 255                                                                                                    |  |
|         | References 256                                                                                                 |  |
| 8       | Phase Formation via Electromigration 259                                                                       |  |
| 0.1     | Semen V. Kornienko and Andriy M. Gusak                                                                         |  |
| 8.1     | Introduction 259                                                                                               |  |
| 8.2     | Theory of Phase Formation and Growth in the Diffusion Zone at interdiffusion in an External Electric Field 260 |  |
| 8.2.1   | External Field Effects on Intermetallic Compounds Growth at Interdiffusion 260                                 |  |
| 8.2.2   | Criteria for Phase Suppression and Growth in an External Field 267                                             |  |
| 8.2.3   | Effect of an External Field on the Incubation Time of a Suppressed Phase 270                                   |  |
| 8.2.4   | Conclusions 271                                                                                                |  |
| 8.3     | Effects of Electromigration on Compound Growth at the Interfaces 272                                           |  |
| 8.4     | Reactive Diffusion in a Binary System at an Imposed Electric Current at Nonequilibrium Vacancies 275           |  |
| 8.4.1   | Equation for the Growth of an Intermediate Phase taking into Account Nonequilibrium Vacancies 275              |  |
| 8.4.2   | Analysis of the Equation for the Rate of Intermediate Phase Growth in<br>Limiting Cases 279                    |  |
| 8.4.3   | Numerical Solution of the Equation for the Intermediate Phase Rate of Growth 281                               |  |
| 8.4.4   | Conclusion 286                                                                                                 |  |
|         | References 286                                                                                                 |  |

| XII Contents |                                                                   |
|--------------|-------------------------------------------------------------------|
| 9            | Diffusion Phase Competition in Ternary Systems 289                |
|              | Semen V. Kornienko, Yuriy A. Lyashenko, and Andriy M. Gusak       |
| 9.1          | Introduction 289                                                  |
| 9.2          | Phase Competition in the Diffusion Zone of a Ternary System 289   |
| 9.2.1        | Phase Competition in the Diffusion Zone of a Ternary System with  |
|              | Two Intermediate Phases 290                                       |
| 9.2.2        | Influence of Pt on Phase Competition in the Diffusion Zone of the |
|              | Ternary (NiPt)-Si System 295                                      |
| 9.2.2.1      | Basic Considerations 295                                          |
| 9.2.2.2      | Effect of Pt on Phase Competition in the Diffusion Zone           |
|              | of Ni–Si 297                                                      |
| 9.2.2.3      | Calculations and Discussion 300                                   |
| 9.3          | Ambiguity and the Problem of Selection of the Diffusion Path 302  |
| 9.3.1        | General Remarks 302                                               |
| 9.3.2        | Analytical Solution of the Simplified Symmetric Model 304         |
| 9.3.3        | Numerical Calculations for a Complex Model 309                    |
| 9.3.4        | Conclusions 320                                                   |
| 9.4          | Nucleation in the Diffusion Zone of a Ternary System 321          |
| 9.4.1        | Model Description 321                                             |
| 9.4.2        | Algorithm and Results for the Model System 325                    |
| 9.4.3        | Discussion 327                                                    |
|              | References 329                                                    |
|              | Further Reading 331                                               |
| 10           | Interdiffusion with Formation and Growth of Two-Phase Zones 333   |
|              | Yuriy A. Lyashenko and Andriy M. Gusak                            |
| 10.1         | Introduction 333                                                  |
| 10.2         | Peculiarities of the Diffusion Process in Ternary Systems 334     |
| 10.2.1       | Notations 334                                                     |
| 10.2.2       | Thermodynamic Peculiarities 335                                   |
| 10.2.3       | Diffusion Peculiarities 336                                       |
| 10.2.4       | Types of Diffusion Zone Morphology in Three-Component             |
|              | Systems 337                                                       |
| 10.3         | Models of Diffusive Two-Phase Interaction 340                     |
| 10.3.1       | Model Systems 341                                                 |
| 10.3.2       | Phenomenological Approach to the Description of Interdiffusion in |
|              | Two-Phase Zones 345                                               |
| 10.3.3       | Choice of the Diffusion Interaction Mode 348                      |
| 10.4         | Results of Modeling and Discussion 350                            |
| 10.4.1       | One-Dimensional Model of Interdiffusion between Two-Phase         |
|              | Alloys 350                                                        |
| 10.4.2       | The Problem of Indefiniteness of the Final State 352              |
| 10.4.3       | Diffusion Path Stochastization in the Two-Phase Region 353        |
| 10.4.4       | Invariant Interdiffusion Coefficients in the Two-Phase Zone 354   |

| 10.4.5   | Conclusions 356                                                                                                                                           |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|          | References 356                                                                                                                                            |  |
|          | Further Reading 358                                                                                                                                       |  |
| 11       | The Problem of Choice of Reaction Path and Extremum Principles 359                                                                                        |  |
|          | Andriy M. Gusak and Yuriy A. Lyashenko                                                                                                                    |  |
| 11.1     | Introduction 359                                                                                                                                          |  |
| 11.2     | Principle of Maximal Entropy Production at Choosing the Evolution Path of Diffusion-Interactive Systems 359                                               |  |
| 11.3     | Nonequilibrium Thermodynamics: General Relations 361                                                                                                      |  |
| 11.3.1   | Isolated Systems 361                                                                                                                                      |  |
| 11.3.2   | System in a Thermostat 363                                                                                                                                |  |
| 11.3.3   | Inhomogeneous Systems: Postulate of Quasi-Equilibrium for Physically Small Volumes 364                                                                    |  |
| 11.3.4   | Extremum Principles 366                                                                                                                                   |  |
| 11.4     | Application of the Principles of Thermodynamics of Irreversible Processes: Examples 368                                                                   |  |
| 11.4.1   | Criterion of First Phase Choice at Reaction-Diffusion Processes 368                                                                                       |  |
| 11.5     | Conclusions 378                                                                                                                                           |  |
|          | References 379                                                                                                                                            |  |
| 12       | Choice of Optimal Regimes in Cellular Decomposition, Diffusion-Induced Grain Boundary Migration, and the Inverse Diffusion Problem 381 Yuriy A. Lyashenko |  |
| 12.1     | Introduction 381                                                                                                                                          |  |
| 12.2     | Model of Self-Consistent Calculation of Discontinuous Precipitation Parameters in the Pb–Sn System 382                                                    |  |
| 12.2.1   | General Description of the Model Systems 384                                                                                                              |  |
| 12.2.2   | Model Based on the Balance and Maximum Production of Entropy 387                                                                                          |  |
| 12.2.2.1 | Phase Transformations and Law of Conservation of Matter 388                                                                                               |  |
| 12.2.2.2 | Calculation of the Driving Force 389                                                                                                                      |  |
| 12.2.2.3 | Calculation of Energy Dissipation in the Transformation Front along the Precipitation Lamella 389                                                         |  |
| 12.2.2.4 | Calculation of Energy Dissipation Close to the Transformation Front 393                                                                                   |  |
| 12.2.3   | Calculation of Entropy Production Taking into Account Grain<br>Boundary Diffusion and Atomic Jumps through the Grain<br>Boundary 400                      |  |
| 12.2.3.1 | Optimization Procedure and Calculation Results 401                                                                                                        |  |
| 12.3     | Model of Diffusion-Induced Grain Boundary Migration (DIGM) Based on the Extremal Principle of Entropy Production by the Example of Cu–Ni Thin Films 405   |  |
| 12.3.1   | Model Description 406                                                                                                                                     |  |

| XIV | Contents |  |
|-----|----------|--|
|     |          |  |

| 12.3.1.1 | Mass Conservation and Thermodynamic Description 408                  |  |
|----------|----------------------------------------------------------------------|--|
| 12.3.1.2 | Calculation of the Entropy Production Rate due to Grain Boundary     |  |
|          | Diffusion 409                                                        |  |
| 12.3.1.3 | Calculation of the Driving Force 410                                 |  |
| 12.3.2   | Results of Model Calculations for the Cu-Ni System 411               |  |
| 12.3.2.1 | Determination of the Curvature of the Gibbs Potential 411            |  |
| 12.3.2.2 | Diffusion Parameters of the System 412                               |  |
| 12.3.2.3 | Grain Boundary Mobility 412                                          |  |
| 12.3.2.4 | Results of the Model Calculation for the Cu/Ni/Cu-Like System 412    |  |
| 12.4     | Entropy Production as a Regularization Factor in Solving the Inverse |  |
|          | Diffusion Problem 416                                                |  |
| 12.4.1   | Description of the Procedure of the Inverse Diffusion Problem        |  |
|          | Solution for a Binary System 416                                     |  |
| 12.4.2   | Results of Model Calculations 418                                    |  |
| 12.5     | Conclusions 421                                                      |  |
|          | References 422                                                       |  |
|          | Further Reading 424                                                  |  |
| 13       | Nucleation and Phase Separation in Nanovolumes 425                   |  |
|          | Aram S. Shirinyan and Andriy M. Gusak                                |  |
| 13.1     | Introduction 425                                                     |  |
| 13.2     | Physics of Small Particles and Dispersed Systems 427                 |  |
| 13.2.1   | Nano-Thermodynamics 427                                              |  |
| 13.2.2   | Production of Dispersed Systems 428                                  |  |
| 13.2.3   | Anomalous Structures and Phases in DSs and Thermodynamic             |  |
|          | Estimates 428                                                        |  |
| 13.2.4   | Influence of DSs on the Temperature of the Phase                     |  |
|          | Transformation 430                                                   |  |
| 13.2.5   | State Diagrams of DSs 431                                            |  |
| 13.2.6   | Shift of the Solubility Limits in DSs 431                            |  |
| 13.2.6.1 | Depletion 432                                                        |  |
| 13.2.7   | Concluding Remarks 432                                               |  |
| 13.3     | Phase Transformations in Nanosystems 433                             |  |
| 13.3.1   | Solid–Solid First-Order Phase Transitions 433                        |  |
| 13.3.1.1 | Geometry of a Nanoparticle and Nucleation Modes 433                  |  |
| 13.3.1.2 | Depletion Effect 435                                                 |  |
| 13.3.1.3 | Regular Solution 435                                                 |  |
| 13.3.1.4 | Change of Gibbs Free Energy 436                                      |  |
| 13.3.1.5 | Minimization Procedure 437                                           |  |
| 13.3.1.6 | Probability Factor of the Phase Transformation 439                   |  |
| 13.3.2   | Phase Diagram Separation 439                                         |  |
| 13.3.2.1 | Variation of Temperature T 439                                       |  |
| 13.3.2.2 | Transition Criterion, Separation Criterion 440                       |  |
| 13.3.2.3 | Varying R 441                                                        |  |

| 13.3.2.4 | Varying $C_0$ 441                                                  |  |  |
|----------|--------------------------------------------------------------------|--|--|
| 13.3.2.5 | Phase Diagram 441                                                  |  |  |
| 13.3.2.6 | Size-Dependent Diagram and Solubilities in Multicomponent          |  |  |
|          | Nanomaterials 442                                                  |  |  |
| 13.3.2.7 | Critical Supersaturation 443                                       |  |  |
| 13.3.2.8 | Concluding Remarks 444                                             |  |  |
| 13.4     | Diagram Method of Phase Transition Analysis in Nanosystems 444     |  |  |
| 13.4.1   | Gibbs's Method of Geometrical Thermodynamics 445                   |  |  |
| 13.4.2   | Nucleation of an Intermediate Phase 446                            |  |  |
| 13.4.2.1 | Phase Transition Criterion 446                                     |  |  |
| 13.4.2.2 | Model of Intermediate Phase 446                                    |  |  |
| 13.4.2.3 | Separation in a Macroscopic Sample: Equilibrium State Diagram 447  |  |  |
| 13.4.2.4 | Separation in DSs: Size-Dependent Phase Diagram 448                |  |  |
| 13.4.2.5 | Influence of Size on Limiting Solubility 449                       |  |  |
| 13.4.2.6 | Influence of Size of an Isolated Particle on the Phase Transition  |  |  |
|          | Temperature 449                                                    |  |  |
| 13.4.2.7 | Concluding Remarks 450                                             |  |  |
| 13.5     | Competitive Nucleation and Growth of Two Intermediate Phases:      |  |  |
|          | Binary Systems 451                                                 |  |  |
|          | Case 1 454                                                         |  |  |
|          | Case 2 454                                                         |  |  |
|          | Case 3 or Crossover Regime 455                                     |  |  |
| 13.5.1   | Application to the Aluminum–Lithium system 456                     |  |  |
| 13.5.2   | Concluding Remarks 458                                             |  |  |
| 13.6     | Phase Diagram Versus Diagram of Solubility: What is the Difference |  |  |
|          | for Nanosystems? 458                                               |  |  |
| 13.6.1   | Some General Definitions 461                                       |  |  |
| 13.6.1.1 | What are the "solidus" and "liquidus"? 461                         |  |  |
| 13.6.1.2 | What is the "Limit of Solubility"? 461                             |  |  |
| 13.6.2   | Nanosized Solubility Diagram 462                                   |  |  |
| 13.6.2.1 | Solubility Limit 462                                               |  |  |
| 13.6.2.2 | Liquidus 462                                                       |  |  |
| 13.6.2.3 | Solidus 462                                                        |  |  |
| 13.6.2.4 | Nanosized Solubility Diagram 462                                   |  |  |
| 13.6.3   | Nanosized Phase Diagram 463                                        |  |  |
| 13.6.3.1 | Three Types of Diagrams 463                                        |  |  |
| 13.6.3.2 | T-C Diagram at Fixed R 464                                         |  |  |
| 13.6.3.3 | Varying R 465                                                      |  |  |
| 13.6.3.4 | Concluding Remarks 465                                             |  |  |
| 13.7     | Some Further Developments 465                                      |  |  |
| 13.7.1   | Solubility Diagram of the Cu–Ni Nanosystem 465                     |  |  |
| 13.7.2   | Size-Induced Hysteresis in the Process of Temperature Cycling of a |  |  |
|          | Nanopowder 466                                                     |  |  |

| XVI | Contents |
|-----|----------|
|     |          |

13.7.2.1 Concluding Remarks 468
 13.A Appendix: The Rule of Parallel Tangent Construction for Optimal Points of Phase Transitions 469
 13.A.1 Resume 470
References 471

Index 475