

Contents

Chapter 1

1.	Introduction and Motivation	15
1.2	Electrospinning and Nanofibers	19
1.2.1	Electrospinning concepts	21
1.2.2	Nanofibers	25
1.2.3	Experiment and Equipments	26
1.2.4	The Solutions	27
1.3	Results and Analysis of the fiber's geometrical shape	27
1.3.1	Results	27
1.3.2	Analysis	30
1.3.2.1	Voltage effects	34
1.3.2.2	Distance effects	35
1.3.2.3	Feed rate effects	36
1.4	Geometrical Analysis of PEO Nanofiber by Atomic Force Microscope	36
1.5	Discussions	41

Chapter 2

2.	Mechanical Characterization of Polyethylene Oxide Nanofiber by Nanoindentation Atomic Force Microscope (AFM)	45
2.1	Introduction	45
2.2	Atomic Force Microscopy (AFM)	47
2.3	Nanoindentation based on Atomic Force Microscope (N-AFM)	50
2.3.1	Introduction to the AFM based Indentation	50
2.3.2	The Hertz model	52
2.3.3	Some points that should be taken into account when applying the AFM-Nanoindentation method	55
2.3.4	Nanoindentation Model	56
2.4	Experiments and Equipment	61

2.5	Results and statistical data analysis	63
2.5.1	Statistical data analysis of the data obtained by cantilever HYDRO6V-100NG	63
2.5.1.1	Statistical data analysis of the fiber's width	63
2.5.1.2	Statistical data analysis of the fiber's Young's modulus	66
2.5.2	Statistical data analysis of the data obtained by cantilever ElectriMulti75-G	69
2.5.3	Statistical data analysis of the Young's modulus and fiber's width	69
2.5.4	Wilcoxon Signed-Rank Test to validate the Nanoindentation method	77
2.5.5	Validation of the Nanoindentation method through the Wilcoxon Signed- Rank Test	78
2.5.6	Results for the values of the PEO nanofibers Young's modulus by AFM-Nanoindetation	80
2.6	Possible causes for the overestimation and underestimation of the E modulus.	82
2.7	Conclusion	84

Chapter 3

3.1	Introduction	85
3.2	Mathematical model of the coplanar micro strip/ nanofibers sensor system	88
3.2.1	Total impedance of the sensor (CP μ S) based on transmission line model	89
3.2.2	Capacitance	90
3.2.3	Inductance	92
3.2.4	Resistance	93
3.2.5	Conductance	94
3.3	Experiment and equipment	95
3.3.1	Impedance measurement	95
3.3.2	Measurement range and accuracy for the HIOKI LCR device	97
3.3.3	Coplanar micro strips dimensions measurement by CLSM	98

3.4	Simulation, Results and Analysis of the Impedance spectroscopy for the CP μ S/nanofibers sensor system.	99
3.4.1	Simulations of the impedance vs. frequency for the CP μ S	99
3.4.2	Results and impedance spectroscopy analysis of the CP μ S/nanofibers sensor system	100
3.4.2.1	Results for the CP μ S/electrospun sensor system S1	101
3.4.2.2	Calculation of the polymer electrospun conductance of S1 by curve fitting	103
3.4.2.3	Results for the CP μ S/nanofibers sensor system S3	106
3.4.2.4	Calculation of the polymer electrospun conductance of S3 by curve fitting	108
3.4.2.5	Analysis of the nanofiber's diameter deposited on the sensor system S1 and S3.	109
3.5	Mathematical approach to obtain the capacitance C_p and the conductance G_p of the polymer nanofibers (electrospun), based on the experimental results.	111
3.5.1	Mathematical Model for C_p and C_p based on the transmission line theory	111
3.5.2	Mathematical result based on the conditions $\gamma \geq 4$ and $\gamma \leq 0.2$	115
3.6	Conclusions	118

Chapter 4

4.1	Conclusions	121
4.2	Future perspective	122

References

125

Appendices

135

A	Scilab program	135
A.1	Algorithm to fit the data with the model to extract the conductance	135
A.2	Algorithm to simulate the impedance vs. frequency for the CP μ S.	136

B	Coplanar micro Strip model based on Transmission line	138
B.1.1	Introduction	138
B.1.2	Transmission Line model	138
B.1.3	Circuit model of an ideal bi-line	139
B.1.4	Loss transmission lines	143
B.1.5	Model of a coplanar waveguide sensor based on a Load Transmission Line	146
B.1.6	Coplanar micro strip waveguide (CP μ S) model	149