

Contents

1	Introduction to Network Radar Countermeasure Systems	1
1.1	Introduction	1
1.2	Overview of a Network Radar Countermeasure System	6
1.2.1	Working Principle of a Network Radar Countermeasure System	7
1.2.2	Working Mode of the Network Radar Countermeasure System	11
1.3	Configuration of the Network Radar Countermeasure System	14
1.3.1	Annular Configuration	14
1.3.2	Linear Configuration	15
1.3.3	Zone Configuration	16
1.4	Performance of Network Radar Countermeasure Systems	17
1.4.1	Reconnaissance Detection Area of the Active Mode	17
1.4.2	Reconnaissance Detection Area in Passive Mode	25
1.4.3	Reconnaissance Detection Area in the Integrated Active-Passive Mode	28
1.4.4	Reconnaissance Detection Area in Jamming Conditions	29
1.4.5	Jamming and Suppression Area of the Network Radar Countermeasure System	35
1.4.6	Fuzzy Function in the Mode of Reconnaissance Detection	44
2	Target Positioning of Network Radar Countermeasure Systems	67
2.1	Introduction	67
2.2	Active Mode Target Location	68
2.2.1	Multiple Transmitter One Receiver Mode	68
2.2.2	One Transmitter Multiple Receiver Mode and Multiple Transmitter Multiple Receiver Mode	88

2.3	Target Location in the Passive Mode	114
2.3.1	Acquisition of Location Solution	114
2.3.2	Location Error Analysis	116
2.3.3	Cramér–Rao Bound of Target Location Estimation	117
2.3.4	Simulation and Analysis	119
2.4	Integration of the Active and Passive Modes for Target Location	124
3	Network Radar Countermeasure Systems for Target Recognition	131
3.1	Introduction	131
3.2	Target Recognition with Single Station in Network Radar Countermeasure System	133
3.2.1	The Basic Probability Assignment Calculation of Target Recognition	134
3.2.2	Target Recognition Based on D–S Evidence Theory	139
3.2.3	Single Station Target Identification	143
3.3	Network Center Comprehensive Target Recognition	155
3.3.1	Evidence Weighted Processing of Central Station	157
3.3.2	Recognition Framework Adjustment of Central Station	158
3.3.3	Integrated Identification Example of Central Station	159
4	Target Tracking of Network Radar Countermeasure Systems	163
4.1	Introduction	163
4.2	Target Motion Model	163
4.2.1	Uniform Motion Model	164
4.2.2	Uniformly Accelerated Motion Model	165
4.2.3	Singer Model	166
4.2.4	The Turning Model of Maneuvering Targets	168
4.3	Tracking Filtering Algorithm	169
4.3.1	Information Filter	169
4.3.2	Non-linear Filtering Algorithm	170
4.3.3	Adaptive Filtering Algorithm	174
4.4	Tracking Filter Form	177
4.4.1	Collect Data	177
4.4.2	Centralized Processing Filter Form	178
4.4.3	The Filter Form of Distributed Processing	181
4.5	Joint Probabilistic Data Association Algorithm	184
4.5.1	The Optimal Joint Probability Data Association Algorithm	186
4.5.2	The Simple Joint Probabilistic Data Association Algorithm	190
4.5.3	Associated Algorithm of the Joint Probability Data with the Probability-Weighted Summation Equal to 1	193
4.5.4	Improved Associated Algorithm of the Joint Probability Data	195

4.6	Tracking Multiple Targets by Multiple Receiving Stations	197
4.6.1	The Joint Probabilistic Data Association Algorithm of Parallel Multiple Receiving Stations	197
4.6.2	Joint Probabilistic Data Association Algorithm of Ordered Multiple Receiving Stations	198
4.6.3	Simulation and Analysis	200
5	Network Radar Countermeasure Systems	243
5.1	Introduction	243
5.2	The Pretreatment of a Network Radar Countermeasure System	244
5.2.1	The Space Calibration Network Radar Countermeasure System	244
5.2.2	Time Calibration of the Network Radar Countermeasure System	248
5.3	Hubs Associated Target Track	249
5.3.1	Identity Information Associated with the Target Track	250
5.3.2	Fuzzy Comprehensive Decision of Track Correlation	253
5.3.3	Evidence Track Association Algorithm of Fuzzy Comprehensive Decision	260
5.4	Track Fusion Network Radar Countermeasure System	267
5.4.1	Simple Track Fusion and Cross-Covariance Combination Track Fusion	267
5.4.2	Covariance Intersection Fusion	270
6	Four Countermeasure Capacity Analysis of Network Radar Countermeasure Systems	273
6.1	Network Radar Countermeasure System Anti-jamming Performance Analysis	273
6.1.1	Anti-active Blanket Jamming	274
6.1.2	Resistance to Active Deception Jamming	280
6.2	The Performance Analysis of Network Radar Countermeasure System on Anti-stealth	283
6.2.1	Passive Work Mode for Anti-stealth	284
6.2.2	Selection of Proper Frequency Increasing Anti-stealth Capability	285
6.2.3	Sending and Receiving Allocation and Data Sharing Improve Anti-stealth Capability	286
6.3	Anti-radiation Attack Performance Analysis of a Network Radar Countermeasure System	288
6.3.1	The Advantage of the Network Radar against Anti-surveillance System and Anti-radiation Weapons	288
6.3.2	Anti-destroying Capability Analysis	290

6.4 Network Radar Countermeasure System Against Anti-Low-Altitude Penetration Performance Analysis	294
6.4.1 Bi-static Radar Increasing the Detection Range	294
6.4.2 Passive Detection Improves the Low-Altitude Target Detection Capability	296
Bibliography	299