Contents

Preface ---- V

List of	Tables — XIII			
List of	Figures —— XV			
List of symbols and abbreviations — XXIII				
1	Introduction —— 1			
1.1	Background —— 1			
1.2	Research motivation —— 2			
1.3	Characteristics of FSOC — 5			
1.3.1	Directionality of the light beam —— 5			
1.3.2	Form factors, i.e. size and power per bit —— 5			
1.3.3	Ability to be operated license-free worldwide			
	and quick installation —— 6			
1.3.4	Wavelength selection criteria —— 6			
1.3.5	Challenges and limitations — 7			
1.4	Applications and advantages —— 7			
1.5	Research objectives —— 8			
1.6	Original contributions – newness and achievements —— 8			
1.7	Thesis organization —— 9			
2	Real-time measurement of meteorological parameters for estimating			
	low altitude atmospheric turbulence strength (C _n ²) 13			
2.1	Introduction —— 13			
2.2	Background and related works —— 14			
2.3	Field test experimental setup and measurement protocol —— 16			
2.4	Sensor interfacing architectures and data acquisition protocols —— 18			
2.4.1	Wind speed measurement – cup anemometer — 19			
2.4.2	Relative humidity and temperature measurement – SHT11 Sensor —— 21			
2.4.3	Absolute pressure measurement – SCP1000-D01 sensor —— 24			
2.5	Communication protocol and frame format —— 29			
2.6	Performance calibration of the proposed measurement system —— 31			
2.7	Atmospheric turbulence strength (C_n^2) estimation — 34			
2.8	Experimental results and discussions —— 36			
2.8.1	Data for 28 th December 2012, winter —— 37			
2.8.2	Data for 5 th March 2013, presummer —— 39			
2.8.3	Data for 17 th May 2013, summer —— 39			
2.8.4	Data for 13 th June 2013, monsoon —— 41			
2.8.5	Data for 16 th November 2013, rainy —— 43			

2.9	Advantages —— 44
2.10	Summary —— 44
3	Comparison of different models for ground-level atmospheric attenuation and turbulence strength (C_n^2) prediction with new models according to
	local weather data for FSO applications —— 47
3.1	Introduction —— 47
3.2	Background and related works —— 51
3.3	Experimental setup and description of optoelectronic assembly —— 53
3.4	Comparison models of atmospheric influence
	on optical propagation —— 54
3.4.1	Atmospheric attenuation —— 55
3.4.2	Atmospheric optical turbulence strength —— 58
3.5	Formulation of the mathematical model —— 60
3.5.1	Atmospheric attenuation —— 60
3.5.2	Atmospheric turbulence strength (C_n^2) from meteorological
	measurements —— 63
3.6	Experimental results and data analysis —— 67
3.6.1	Comparison of the predicted attenuation data
	with measured values —— 67
3.6.2	Comparison of predicted C_n^2 data with measured values —— 80
3.7	Summary —— 92
4	Mitigation of beam wandering due to atmospheric turbulence and
	prediction of control quality using intelligent decision making tools —— 93
4.1	Introduction —— 93
4.2	Background and related works —— 95
4.3	FSO link – optoelectronic assembly and setup description —— 97
4.4	Steady state response analysis —— 100
4.4.1	Optoelectronic position detector —— 100
4.4.2	Piezo driving amplifier —— 101
4.4.3	Piezoelectric actuators —— 101
4.5	Development of response surface models —— 103
4.6	Development of the neural network model —— 105
4.7	Experimental results and discussion —— 109
4.7.1	Verification and validation of RSM and neural-controller model —— 109
4.7.2	Behavioral study of neural-controller in beam alignment —— 113
4.7.3	Analysis of receiver signal quality improvement —— 114
4.8	Summary —— 115

5	Low power and compact RSM and neural-controller design for beam wandering mitigation with a horizontal-path propagating Gaussian-beam
- 4	wave: focused beam case —— 117
5.1	Introduction — 117
5.2	Background and related works —— 119
5.3	Experimental plant configuration and centroid error
	computation —— 120
5.4	Formulation and implementation of direct controller —— 122
5.5	Hardware architecture and implementation
	of the neural-controller —— 124
5.5.1	Clock manager unit —— 128
5.5.2	Signal digitization and data preprocessing unit —— 128
5.5.3	Weight and bias memory management circuit —— 130
5.5.4	Neuron unit —— 131
5.5.5	Data Routing Ring Circuit (DRRC) —— 132
5.5.6	Multiply-Accumulator unit (MAC) —— 134
5.5.7	Serial communication manager —— 135
5.6	Experimental results and discussion —— 136
5.6.1	Control schemes validation and evaluation in open loop
	decision-making —— 136
5.6.2	Performance study of closed loop experiment with intensity feedback
	control —— 140
5.6.3	Analysis of beam spot auto alignment and reduction of
	wandering — 143
5.6.4	Behavioral study of effective scintillation index and impulse
	response — 144
5.7	Summary —— 146
	Ouglitus matrice and reliabilitus analysis of annual to annual for
6	Quality metrics and reliability analysis of ground-to-ground free space
	laser communication in different weather conditions together with beam
	steering system —— 149
6.1	Introduction — 149
6.2	Background and related works — 154
6.3	Theory and numerical technique for channel effect
	and BER evaluation —— 156
6.4	Simplex data transmission experimental setup
	and its description —— 159
6.5	Experimental results and data analysis —— 161
6.5.1	Comparative evaluation of received signal statistics —— 162
6.5.2	Impact validation of beam wandering compensation system —— 166

XII	Contents
-----	----------

6.5.3	Quantitative analysis of atmospheric turbulence effects on
	communication parameters – improvement and reliability —— 170
6.6	Summary —— 173

7 Conclusions and future work —— 175

7.1 Conclusions —— 175

7.2 Future work —— 178

References —— 183 Index —— 201