

Table of Contents

List of Figures	XVII
List of Tables.....	XXI
List of Definitions	XXIII
List of Abbreviations.....	XXV
1 Introduction and Motivation	1
1.1 Problem Analysis.....	6
1.1.1 Product and Technology Related Challenges.....	7
1.1.2 Process Related Challenges.....	8
1.1.3 Structure Related Problems	12
1.2 Problem Definition, Objectives, and Research Questions.....	16
1.3 Approach and Structure of the Thesis.....	19
2 Mechatronic Product Development	23
2.1 Introduction and Terminological Understanding.....	23
2.1.1 Contexts of Terminological Understanding	24
2.1.2 Paradigms of Mechatronics	25
2.1.3 Definitions of Mechatronics	27
2.2 The Evolution of Mechatronic Products	27
2.3 Mechatronic Systems	29
2.3.1 Characteristics and Definition	29
2.3.2 Structure of Mechatronic Systems	31
2.4 Mechatronic Product Development.....	34
2.4.1 Characteristics and Definition	34
2.4.2 Development Methodologies in MPD.....	36
2.5 Mechatronics Engineering Science.....	41
2.5.1 Disciplinary Interaction and Evolutionary Models	42
2.5.2 Disciplinary Interactions and Evolution of MPD and Mechatronics Engineering Science	46
2.5.3 Conclusions	48

2.6 Modeling and CAx Tools in Mechatronic Product Development.....	49
2.6.1 Definition of a Modeling Taxonomy.....	53
2.6.2 Identification of Modeling Tools	59
2.6.3 Allocation of Models to Design Phases of the VDI Guideline 2206.....	62
3 Knowledge: Concepts and Taxonomies.....	67
3.1 An Information Science Perspective on Data, Information, and Knowledge.....	68
3.2 Knowledge Taxonomies.....	73
3.2.1 Knowledge Explicitness	73
3.2.2 Organizational Reach of Knowledge.....	77
3.2.3 Causal, Conditional and Strategic Knowledge.....	77
3.2.4 Declarative and Procedural Knowledge	77
3.2.5 Conclusions	78
4 A Cognitive Psychology Perspective on Individual Knowledge Creation	79
4.1 Overview on Descriptive Models of Thinking	80
4.2 Dual-Process Theories of Thinking	81
4.2.1 Dual-System View in Decision Making and Judgment	81
4.2.2 Generalization of Dual-Processing and Dual System Theories.....	83
4.3 Tripartite Model of Mind	84
5 Organizational Knowledge Creation	89
5.1 A Knowledge Science Perspective on the Model of Organizational Knowledge Creation	89
5.1.1 Organizational Knowledge Creation: Process and Model.....	91
5.1.2 Knowledge Dynamics: Knowledge Flows and Life Cycles	93
5.1.3 <i>Ba</i> : Shared Context for Knowledge Creation.....	96
5.1.4 Knowledge Resources	97
5.2 Knowledge Management	98
5.2.1 Overview	98
5.2.2 Critical Remarks.....	103
6 Research Framework for the Analysis of the Knowledge Characteristics of Product Development	105
6.1 An Descriptive Model of Knowledge Creation in Interdisciplinary Product Development	108

6.1.1 Individual Knowledge Creation within Product Development	108
6.1.2 Organizational Knowledge Creation in Product Development	116
6.1.3 Synthesis of the Descriptive Model for Knowledge Creation in Interdisciplinary Product Development	117
6.2 Taxonomies of Knowledge in Product Development	123
6.3 Requirements for the Analysis of Knowledge Characteristics within Product Development	127
6.4 Approaches to the Analysis of Knowledge Characteristics within Product Development	129
6.4.1 Knowledge Audit	129
6.4.2 Knowledge Mapping	130
6.4.3 Knowledge Flow Analysis and Modeling (KFAM)	131
6.4.4 Process-based Approach to Knowledge-Flow Analysis	132
6.4.5 Knowledge Modeling Description Language (KMDL)	133
6.4.6 State-Process-Resource Modeling	135
6.4.7 Assessment of Requirements Coverage	135
6.5 Synthesis of Research Framework	137
7 Process Elements of Mechatronic Product Development	141
7.1 Approach for Establishing a Process View based on Common Process Elements	142
7.2 Identification and Compilation of Common Process Elements for MPD	143
7.2.1 Identification of Relevant Procedure Models of MPD	144
7.2.2 Clarification of Terminology and Alignment of Process Elements	145
7.2.3 Compilation of Common Process Elements and Roles	146
7.2.4 Establishing the KMDL Process View for Common Process Elements	147
7.3 Knowledge Characteristics of Common Process Elements	152
7.3.1 Establishing the KMDL Activity View for Common Process Elements	152
7.3.2 Conclusions	153
8 Semantic Technologies for Design Support in Mechatronic Product Development	157
8.1 Requirements for the Design Support System in MPD	158
8.2 Semantic Technologies for the Semantic Web	159
8.2.1 Linked Data	160
8.2.2 Vocabularies	163

8.3 Semantic Technologies for Design Support in MPD.....	166
8.3.1 Analysis and Selection of Vocabulary	166
8.3.2 Interlinking of Models.....	170
8.3.3 Semantically-Enabled Applications	170
8.3.4 Queries	171
8.3.5 Knowledge-Profiles.....	171
8.3.6 Conclusions	171
9 Architecture for a Design Support System in Mechatronic Product Development	173
 9.1 Use-Case Modeling.....	174
9.1.1 Use Case: Authenticate User	174
9.1.2 Use Case: Filter the Retrieved RDF Triples by the Knowledge Profile of a User	174
9.1.3 Use Case: Publication of URIs and RDF Triples for a Model	174
9.1.4 Use Case: Access the Resources and RDF Triples of a Model	175
9.1.5 Use Case: Explore the Structure of the RDF Triples of a Model.....	176
9.1.6 Use Case: Indicate Current Development Activity and Use Pre-Built Queries	176
9.1.7 Use Case: Query the Metadata of Multiple Models and Discover New Information and Knowledge.....	177
9.1.8 Use Case: Author the Knowledge Profile of a User.....	177
9.1.9 Use Case: Capture Development Activities and Author Pre-Built Queries	178
9.1.10 Summary	178
 9.2 Architecture Development	179
9.2.1 Functional Partitioning.....	179
9.2.2 Architectural Constraints.....	180
 9.3 System Architecture of Design Support System.....	181
9.3.1 Differentiation from Standard Architectures and Standard Software	181
9.3.2 Separation of Client and Server Side Functionality	183
9.3.3 Logical and Physical System Architecture.....	183
 9.4 Assessment of Requirements Coverage and Conclusions.....	186
10 Summary and Outlook.....	189
10.1 Summary.....	189
10.2 Potentials for Future Research	191
References	193

Glossary	213
List of Appendices	217