Contents

1	Bac	kgroun	d and Introduction	1
	1.1	Backg	ground	1
	1.2	Accor	mplishments and Present Research Status	4
		1.2.1	Premixed Flame	5
		1.2.2	Research of Dynamics and Mechanisms of Premixed	
			Flame Propagation in Tubes	16
		1.2.3	Research of Combustion and Explosion Safety	
			in Utilization of Hydrogen Energy	21
	1.3	Scient	ific Issues and Research Objectives of the Thesis	25
	1.4	Resea	rch Content and Organization of the Thesis	27
	Refe	erences	-	28
2	_		ts of Premixed Hydrogen-Air Flame Propagation	
	in D			35
	2.1		uction	35
	2.2		imental Setup and Methods	35
		2.2.1	Combustion Tube	36
		2.2.2	Gas Mixture Preparation and Filling System	36
		2.2.3	High-Voltage Ignition System	37
		2.2.4	High-Speed Photography System	38
		2.2.5	Schlieren Optics System	39
		2.2.6	Pressure Transducer	40
		2.2.7	Data Acquisition Device	40
		2.2.8	Synchronization System	41
	2.3	Exper	iment Procedure and Initial Conditions	42
		2.3.1	Methodology	42
		2.3.2	Procedure	42
		2.3.3	Initial Parameters	42
	2.4	Exper	imental Results and Discussion	43
		2.4.1	Hydrogen-Air Flame Propagation in Half-Open Tubes	43
		2.4.2	Hydrogen-Air Flame Propagation in Closed Tubes	45

xvi Contents

		2.4.3	Behaviors and Characteristics of Distorted				
			Tulip Flames	47			
		2.4.4	Comparisons of Distorted Tulip Flame to Classical				
			Tulip Flame	49			
		2.4.5	Effects of Gravity	52			
		2.4.6	Effects of Equivalence Ratio	54			
		2.4.7	Effects of Opening Ratio	58			
	2.5	Summ	nary	66			
	Refe	erences		67			
3			Simulations of Dynamics of Premixed				
	Hyd	lrogen-	Air Flames Propagating in Ducts	71			
	3.1	Introd	luction	71			
	3.2	Mode	ls and Methods	73			
		3.2.1	Physical Model	73			
		3.2.2	Mathematical Model and Governing Equations	74			
		3.2.3	Combustion Modeling	77			
	3.3	Nume	crical Results and Discussion	83			
		3.3.1	Results Based on Thickened Flame Technique				
			and Comparisons to Experiments	83			
		3.3.2	LES Calculations Using Burning Velocity				
			Model and Comparisons to Experiments	92			
	3.4	Summ	nary	101			
	_			103			
4	Theoretical Analysis of Premixed Hydrogen-Air Flame						
	Pro		on in Ducts	107			
	4.1		luction	107			
	4.2		tion of Premixed Flame in a Duct	108			
	4.3		rs Influencing the Flame Properties	109			
		4.3.1	Influence of Fuel Properties	110			
		4.3.2	Influence of Mixture Composition	110			
		4.3.3	Influence of Pressure and Temperature	110			
		4.3.4	Influence of Impurities	111			
		4.3.5	Influence of Ignition Energy	111			
	4.4 Theoretical Analysis of Premixed Hydrogen-Air Flame						
		in the	Duct	112			
		4.4.1	Empirical Model	112			
		4.4.2	Theoretical Model and Results	113			
	4.5	Comp	parisons Between Experiments, Numerical				
		Simul	ations and Theoretical Predictions,				
		and th	ne Combustion Regime	116			

Contents	xvii
----------	------

	4.6	Effects of Wall Friction	118					
	4.7	Summary	123					
	Refe	erences	124					
5	Med	chanisms of Flame Deformations in the Premixed						
	Hyd	rogen-Air Flame Propagation	127					
	5.1	Introduction	127					
	5.2	Interactions Between Flame and Pressure Waves	128					
	5.3	Formation Mechanism of Tulip Flame—Interactions						
		of Flame with Flow	131					
	5.4	Formation Mechanisms of Distorted Tulip						
		Flames—Interactions Between Flame, Pressure						
		Waves, and Flow	134					
		5.4.1 Interactions of Flame Front with the Vortex						
		Motion in Burnt Gas	134					
		5.4.2 Taylor Instabilities	138					
	5.5	Summary	141					
	Refe	rences	142					
,	~		145					
6	Conclusions and Further Work							
	6.1	Summary	145					
	6.2	Main Conclusions	145					
	6.3	Future Research	148					
	Refe	Reference						