Contents

0	Intro	oduction	1		
	0.1	Separation of variables	1		
	0.2	History	2		
	0.3	Aim	4		
	0.4	Mathematical formulation	6		
	0.5	Method	12		
	0.6	Scope	13		
	0.7	Some examples	15		
	0.8	Overview over the main results	19		
1	The	foundation: the algebraic integrability conditions	25		
	1.1	Young tableaux	30		
	1.2	The 1 st integrability condition	34		
	1.3	The 2 nd integrability condition	40		
	1.4	Redundancy of the 3 rd integrability condition	48		
	1.5	Commuting Killing tensors	49		
2	The proof of concept: a complete solution for the				
	3-di	imensional sphere	55		
	2.1	Properties of algebraic curvature tensors	56		
	2.2	Solution of the algebraic integrability conditions	64		
	2.3	The algebraic geometry of the Killing-Stäckel variety .	72		
	2.4	Interpretation of the Killing-Stäckel variety	80		
	2.5	Separation coordinates	86		
	2.6	The space of separation coordinates	92		
	2.7	The variety of integrable Killing tensors	94		

3	The generalisation: a solution for spheres of arbitrary				
	dime	ension	99		
	3.1	An alternative definition of Stäckel systems	100		
	3.2	Killing tensors with diagonal algebraic curvature tensor	100		
	3.3	The residual action of the isometry group	104		
	3.4	Gaudin subalgebras and the moduli space $\overline{M}_{0,n+1}$	105		
	3.5	The real version $\bar{\mathcal{M}}_{0,n+1}(\mathbb{R})$ and Stasheff polytopes	107		
	3.6	The correspondence	111		
	3.7	Applications	114		
4	The	perspectives: applications and generalisations	121		
	4.1	Other families of Riemannian manifolds	122		
	4.2	Further notions of variable separation	125		
	4.3	Applications	127		
Ad	know	vledgements	131		
Bi	Bibliography				