

Contents

Preface — V

1	Nanodispersions – general introduction — 1
1.1	Definition of colloids — 1
1.2	Definition of nanodispersions — 1
1.3	Main advantages of nanodispersions — 2
1.4	General methods for preparation of nanodispersions — 4
1.5	General stabilization mechanisms for nanodispersions — 5
1.6	Ostwald ripening in nanodispersions — 6
1.7	Industrial applications of nanodispersions — 6
1.8	Outline of the book — 7
2	Colloid stability of nanodispersions — 11
2.1	Introduction — 11
2.2	Electrostatic stabilization — 12
2.3	Steric stabilization — 25
3	Ostwald ripening in nanodispersions — 33
3.1	Driving force for Ostwald ripening — 33
3.2	Kinetics of Ostwald ripening — 34
3.3	Reduction of Ostwald ripening — 39
3.3.1	Reduction of Ostwald ripening in nanosuspensions — 39
3.3.2	Reduction of Ostwald ripening in nanoemulsions — 39
3.4	Influence of initial droplet size of nanoemulsions on the Ostwald ripening rate — 41
4	Preparation of nanosuspensions by the bottom-up process — 45
4.1	Introduction — 45
4.2	Preparation of nanosuspensions by precipitation — 46
4.2.1	Nucleation and growth — 47
4.2.2	Precipitation kinetics — 49
4.2.3	Seeded nucleation and growth — 54
4.2.4	Surface modification — 54
4.2.5	Other methods for preparation of nanosuspensions by the bottom-up process — 55
4.3	Characterization of nanoparticles — 62
4.3.1	Visual observations and microscopy — 62
4.3.2	Electron microscopy — 63
4.3.3	Scattering techniques — 65
4.3.4	Measurement of charge and zeta potential — 70

5	Preparation of nanosuspensions using the top-down process — 77
5.1	Wetting of the bulk powder — 77
5.2	Breaking of aggregates and agglomerates into individual units — 81
5.3	Wet milling or comminution — 83
5.4	Stabilization of the suspension during dispersion and milling and the resulting nanosuspension — 88
5.5	Prevention of Ostwald ripening (crystal growth) — 92
6	Industrial application of nanosuspensions — 95
6.1	Introduction — 95
6.2	Application of nanosuspensions for drug delivery — 95
6.2.1	Preparation of drug nanosuspensions using the top-down process — 96
6.2.2	Optimization of wetting/dispersant agent using PVP-SDS as model — 103
6.2.3	Protocol for preparation of nanosuspensions of water insoluble drugs — 109
6.3	Application of nanosuspensions in cosmetics — 109
6.3.1	Adsorption isotherms — 112
6.3.2	Dispersant demand — 113
6.3.3	Quality of dispersion UV-vis attenuation — 114
6.3.4	Solids loading — 114
6.3.5	SPF Performance in emulsion preparations — 116
6.3.6	Criteria for preparation of a stable sunscreen dispersion — 116
6.3.7	Competitive interactions in formulations — 120
6.4	Application of nanosuspensions in paints and coatings — 121
7	Nanoparticles as drug carriers — 131
7.1	Introduction — 131
7.2	Liposomes as drug carriers — 132
7.3	Polymeric nanoparticles — 139
7.3.1	Surface modified polystyrene latex particles as model drug carriers — 141
7.3.2	Biodegradable polymeric carriers — 142
7.3.3	The action mechanism of the stabilizing PEG chain — 146
7.3.4	Synthesis and characterization of PLA-PEG block copolymers — 149
7.3.5	Preparation and characterization of PLA-PEG nanoparticles — 152
7.3.6	Rheology of PLA-PEG dispersions — 174
7.3.7	Small angle neutron scattering (SANS) of PLA-PEG nanoparticles — 179
7.3.8	Biological performance of PLA-PEG nanoparticles — 184

8	Preparation of nanoemulsion using high pressure homogenizers — 189
8.1	Introduction — 189
8.2	Thermodynamics of emulsion formation and breakdown — 189
8.3	Adsorption of surfactants at the liquid/liquid interface — 191
8.4	Mechanism of emulsification — 194
8.5	Methods of emulsification — 196
8.6	Role of surfactants in emulsion formation — 197
8.7	Role of surfactants in droplet deformation — 199
8.8	Selection of emulsifiers — 203
8.8.1	The hydrophilic-lipophile balance (HLB) concept. — 203
8.8.2	The phase inversion temperature (PIT) concept. — 206
8.8.3	The cohesive energy ratio (CER) concept — 207
8.8.4	The critical packing parameter (CPP) for emulsion selection — 209
8.9	Preparation of nanoemulsions using high energy methods — 210
8.10	Emulsification process functions — 213
8.11	Enhancing of the process of forming nanoemulsions — 214
9	Low energy methods for preparation of nanoemulsions and practical examples of nanoemulsions — 217
9.1	Introduction — 217
9.2	Phase inversion composition (PIC) Principle — 218
9.3	Phase inversion temperature (PIT) Principle — 218
9.4	Preparation of nanoemulsions by dilution of microemulsions — 220
9.5	Steric stabilization and the role of the adsorbed layer thickness — 222
9.6	Ostwald ripening in nanoemulsions — 222
9.7	Practical examples of nanoemulsions — 223
9.8	Nanoemulsions based on polymeric surfactants — 232
10	Swollen micelles or microemulsions and their industrial applications — 239
10.1	Introduction — 239
10.2	Thermodynamic definition of microemulsions — 240
10.3	Mixed film and solubilization theories of microemulsions — 241
10.3.1	Mixed film theories [4] — 241
10.3.2	Solubilization theories — 243
10.4	Thermodynamic theory of microemulsion formation — 245
10.4.1	Reason for combining two surfactants — 245
10.4.2	Free energy of formation of a microemulsion — 247
10.4.3	Factors determining W/O versus O/W microemulsions — 248
10.5	Characterization of microemulsions using scattering techniques — 250
10.5.1	Time average (static) light scattering — 251

10.5.2	Calculation of droplet size from interfacial area —	252
10.5.3	Dynamic light scattering (photon correlation spectroscopy, PCS) —	253
10.5.4	Neutron scattering —	254
10.5.5	Contrast matching for determining the structure of microemulsions —	255
10.6	Characterization of microemulsions using conductivity —	256
10.7	NMR measurements —	259
10.8	Formulation of microemulsions —	260
10.9	Industrial applications of microemulsions —	261
10.9.1	Microemulsions in pharmaceuticals —	261
10.9.2	Applications of microemulsions in cosmetics —	265
10.9.3	Applications in agrochemicals —	266
10.9.4	Applications in the food industry —	268
10.9.5	Microemulsions in biotechnology —	271
10.9.6	Microemulsions in enhanced oil recovery (EOR) —	272
10.9.7	Microemulsions as nanosize reactors for synthesis of nanoparticles —	276

Index — 281