

Contents

1	Early Times of Photochemistry	1
1.1	Introduction	1
1.2	Light and Chemistry	3
1.3	Historic Notes	4
	References	7
2	The Framework of Photochemistry: The Laws	9
2.1	The Relation with Light Wavelength	10
2.2	Relation with Light Intensity	16
2.3	Early Attempts to Rationalize Photochemical Reactions	18
2.4	Relation with Light Quanta	22
2.5	Measured Quantum Yield	25
2.6	Mechanism	33
2.7	Kinetics	34
2.8	The “Laws” of Photochemistry	35
	References	37
3	The Framework of Photochemistry: State Diagram	41
3.1	Absorption/Emission	41
3.2	The Triplet State: Emission	42
3.3	The Triplet State: Reactions	52
3.4	Paradigms of Photochemistry	56
3.5	Generalized Use of the State Diagram	57
3.6	Moving Along the States	58
	References	60
4	Some Paradigmatic Topics	63
4.1	Photochemistry for Synthesis	63
4.1.1	Some Exemplary Cases of Early Reported Photoreactions: Santonin, Anthracene, 2+2 Cycloaddition	65
4.1.2	The Synthetic Potential of Photochemistry	74

4.1.3	A “Green” Synthetic Method	78
4.2	Born to Measure	79
4.2.1	<i>o</i> -Nitrobenzaldehyde and the Equivalence Law	79
4.2.2	Mechanism: Early Studies	81
4.2.3	Mechanism: Modern Studies	83
4.2.4	<i>o</i> -Nitrobenzaldehyde as an Actinometer	85
4.3	Oxygenation Reactions and Singlet Oxygen	87
4.3.1	Photosensitized Oxygenations in Biologic Systems	87
4.3.2	Oxygenation Reactions	88
4.3.3	Mechanism	90
4.4	Inorganic Photochemistry	95
4.4.1	Early Work	95
4.4.2	Photochemistry and Photophysics of Transition Metal Complexes	97
4.4.3	Transition Metal Complexes as Sensitizers	99
4.5	Energy from the Sun	101
4.5.1	Ciamician in 1912	101
4.5.2	Bodenstein in 1915	103
4.5.3	The Beginning of Photocatalysis	105
4.6	Cursory Elements of Photobiology	106
4.6.1	Photosynthesis	107
4.6.2	Vision	114
4.6.3	Vitamin D	116
4.6.4	Medicinal Applications of Photochemistry	117
	References	121
5	The Role of Photochemistry in Chemistry	131
5.1	Photochemistry in Chemistry Meetings	131
5.2	The Role of Photochemistry, 1912–2013	133
5.3	Publications in Photochemistry	134
	References	136
6	Photochemistry, a Powerful Science	139
6.1	Harry Potter Meets Photochemistry	139
6.2	This Is How It Happens: Time-Resolved Spectroscopy in Photochemistry	142
6.2.1	Flash Photolysis with Lamps	143
6.2.2	Laser Flash Photolysis and Pump-Probe Spectroscopy	148
6.2.3	Two-Color Flash Photolysis	153
6.2.4	Local Interactions	154
6.2.5	Flash Photolysis with Different Detection	157
6.3	This Is How It Happens: Blocking the Intermediates	158
6.4	Anything You Can Do, Photochemistry Can Do Better: Generating Intermediates	164
6.4.1	Carbocations	165
6.4.2	Carbenes	168

6.4.3	Nitrenes	169
6.4.4	Aromatic Biradicals: Didehydrobenzenes and Didehydrotoluenes	172
6.5	Anything You Can Do Photochemistry Can Do Better: Making (Strained) Molecules	175
	References	179
7	Of Excited States Again	183
7.1	Expanding the State Diagram	183
7.2	Upconversion	187
7.3	Multiphotonic Processes	190
7.4	Quantum Yield of Excited States Larger than One	191
7.5	Ultrafast Processes	193
7.6	Reactions via Upper States	194
7.7	The Future of Photochemistry	199
	References	201
8	Photochemical and Photocatalyzed Synthesis	205
8.1	Application in Synthesis: Synthetic Sequences	205
8.1.1	Photochemical Steps in Synthetic Planning	206
8.1.2	Old and New Strategies in Synthesis	209
8.1.3	Synthesis via Chiral Auxiliary	211
8.2	Asymmetric (Photochemical) Synthesis	212
8.2.1	Absolute Asymmetric Synthesis	212
8.2.2	Chirality Transfer	213
8.3	Catalysis	214
8.3.1	Organocatalysis	214
8.3.2	Catalysis: Only the Complexed Reagent Is Activated	215
8.3.3	Catalysis: Atropisomerism	216
8.3.4	Catalysis: <i>Only</i> the Complexed Form Is Reactive	217
8.3.5	By Using a Strong Chiral Complex in a Way to Limit Reversibility, Even When Hindered	218
8.3.6	Polyfunctional Catalysis	219
8.3.7	By Resorting to an Intrinsically Fast Reaction, Such as Proton Transfer	220
8.3.8	Catalysis: Chiral Memory	221
8.3.9	One-Pot Catalytic Procedure	222
	References	222
9	Medicinal and Diagnostic Applications	227
9.1	Where and When	227
9.1.1	Photochemical Drug Release	227
9.1.2	Applications with UV Light	228
9.1.3	Application with Near IR	229
9.1.4	Nanoparticles	230
9.1.5	Transition Metal Complexes	232

9.2	Photochemical Internalization	233
9.3	Upconversion for the Photoactivation of Drugs	233
9.4	Diagnostic Applications: Two-Photon Fluorescence	235
9.5	Diagnostic Applications. Aggregation-Enhanced Fluorescence	239
9.6	Antimicrobics	241
	References	242
10	Solar Energy Conversion	245
10.1	Non-photosynthetic Strategies	246
10.2	Artificial Photosynthesis	247
10.3	Dye-Sensitized Solar Cells	253
10.4	Comparing Different Approaches	254
10.5	Singlet Fission	256
10.6	Hydrogen as an Energy Carrier	257
10.7	Socioeconomic Issues	258
	References	259
11	Actuators	263
11.1	Photochromism	263
11.1.1	Fluorescent Switches	263
11.1.2	Electrical Functions of Photochromic Molecules	268
11.2	Two Color/One Color	269
11.3	Photomechanical Actuators	272
11.3.1	Molecular Motors from Molecular Movements	272
11.3.2	Macroscopic Effects	273
11.3.3	Mechanical Work from Crystal Deformations Caused by Molecular Transformations	277
11.4	Self-Assembling	279
	References	281
12	Photochemistry and Green Synthesis	285
12.1	Photochemistry for Bioresources	285
12.2	Preparative Photochemistry	286
12.2.1	Assessing the Green Potential	286
12.3	What to Be Afraid of and What Not to Be Afraid of in Photochemical Reactions	288
12.4	Method of Irradiation	291
12.5	Scaling Up a Photochemical Reaction	292
12.6	Destructive Green Photochemistry	295
	References	296
Index		299