## Applications of Domino Transformations in Organic Synthesis 2

|               | Preface ·····                                                                                                          | ٧   |
|---------------|------------------------------------------------------------------------------------------------------------------------|-----|
|               | Volume Editor's Preface · · · · · · · · · · · · · · · · · · ·                                                          | IX  |
|               | Abstracts                                                                                                              | ΧI  |
|               | Table of Contents · · · · · · · · · · · · · · · · · · ·                                                                | XIX |
| 2.1           | Pericyclic Reactions ······                                                                                            | 1   |
| <b>2.1.</b> 1 | The Diels-Alder Cycloaddition Reaction in the Context of                                                               |     |
|               | Domino Processes  J. G. West and E. J. Sorensen                                                                        | 1   |
| <b>2.1.</b> 2 | Domino Reactions Including [2+2], [3+2], or [5+2] Cycloadditions  I. Coldham and N. S. Sheikh                          | 47  |
| <b>2.1.</b> 3 | Domino Transformations Involving an Electrocyclization Reaction J. Suffert, M. Gulea, G. Blond, and M. Donnard         | 93  |
| 2.1.4         | Sigmatropic Shifts and Ene Reactions (Excluding [3,3]) A. V. Novikov and A. Zakarian                                   | 159 |
| <b>2.1.</b> 5 | Domino Transformations Initiated by or Proceeding Through [3,3]-Sigmatropic Rearrangements C. A. Guerrero              | 195 |
| 2.2           | Intermolecular Alkylative Dearomatizations of Phenolic Derivatives in Organic Synthesis J. A. Porco, Jr., and J. Boyce | 229 |
| 2.3           | Additions to Alkenes and C=O and C=N Bonds ······                                                                      |     |
| <b>2.3.</b> 1 | Additions to Nonactivated C=C Bonds                                                                                    | 20: |
|               |                                                                                                                        |     |



| <b>2.3.</b> 2 | Organocatalyzed Addition to Activated C=C Bonds                    |     |
|---------------|--------------------------------------------------------------------|-----|
|               | P. Renzi, M. Moliterno, R. Salvio, and M. Bella                    | 337 |
| <b>2.3.</b> 3 | Addition to Monofunctional C=O Bonds                               |     |
|               | A. Song and W. Wang ·····                                          | 387 |
| 2.3.4         | Additions to C=N Bonds and Nitriles                                |     |
|               | E. Kroon, T. Zarganes Tzitzikas, C. G. Neochoritis, and A. Dömling | 419 |
|               |                                                                    |     |
|               | Keyword Index                                                      | 449 |
|               | Author Index                                                       | 481 |
|               | Abbreviations ······                                               | 497 |

Overview

## Table of Contents

| 2.1 Pericyclic Reactions |
|--------------------------|
|--------------------------|

| 2.1.1                   | The Diels-Alder Cycloaddition Reaction in the Context of Domino Processes J. G. West and E. J. Sorensen |    |
|-------------------------|---------------------------------------------------------------------------------------------------------|----|
| <b>2.1.</b> 1           | The Diels-Alder Cycloaddition Reaction in the Context of  Domino Processes                              | 1  |
| <b>2.1.</b> 1.1         | Cascades Not Initiated by Diels–Alder Reaction · · · · · · · · · · · · · · · · · · ·                    | 2  |
| <b>2.1.</b> 1.1.1       | Cascades Generating a Diene                                                                             | 2  |
| <b>2.1.</b> 1.1.1.1     | Ionic Generation of a Diene · · · · · · · · · · · · · · · · · ·                                         | 2  |
| <b>2.1.</b> 1.1.1.1     | Through Wessely Oxidation of Phenols · · · · · · · · · · · · · · · · · · ·                              | 2  |
| <b>2.1.</b> 1.1.1.1.2   | Through Ionic Cyclization · · · · · · · · · · · · · · · · · · ·                                         | 6  |
| <b>2.1.</b> 1.1.1.3     | Through Deprotonation of an Alkene                                                                      | 7  |
| <b>2.1.</b> 1.1.1.4     | Through Elimination Reactions                                                                           | 8  |
| <b>2.1.</b> 1.1.1.5     | Through Allylation · · · · · · · · · · · · · · · · · · ·                                                | 12 |
| <b>2.1.</b> 1.1.1.2     | Pericyclic Generation of a Diene                                                                        | 12 |
| <b>2.1.</b> 1.1.1.2.1   | Through Electrocyclization · · · · · · · · · · · · · · · · · · ·                                        | 13 |
| <b>2.1.</b> 1.1.1.2.1,1 | Through Benzocyclobutene Ring Opening ·····                                                             | 13 |
| <b>2.1.</b> 1.1.1.2.1.2 | Through Electrocyclic Ring Closure                                                                      | 14 |
| <b>2.1.</b> 1.1.1.2.2   | Through Cycloaddition or Retrocycloaddition · · · · · · · · · · · · · · · · · · ·                       | 17 |
| <b>2.1.</b> 1.1.1.2.3   | Through Sigmatropic Reactions                                                                           | 18 |
| <b>2.1.</b> 1.1.1.3     | Photochemical Generation of a Diene · · · · · · · · · · · · · · · · · ·                                 | 19 |
| <b>2.1.</b> 1.1.1.4     | Metal-Mediated Generation of a Diene                                                                    | 20 |
| <b>2.1.</b> 1.1.2       | Cascades Generating a Dienophile                                                                        | 22 |
| <b>2.1.</b> 1.1.2.1     | lonic Generation of a Dienophile                                                                        | 22 |
| <b>2.1.</b> 1.1.2.1.1   | Through Himbert Cycloadditions                                                                          | 22 |
| <b>2.1.</b> 1.1.2.1.2   | Through Benzyne Formation                                                                               | 23 |
| <b>2.1.</b> 1.1.2.1.3   | Through Wessely Oxidation · · · · · · · · · · · · · · · · · · ·                                         | 24 |
| <b>2.1.</b> 1.1.2.2     | Pericyclic Generation of a Dienophile                                                                   | 27 |
| <b>2.1.</b> 1.1.2.2.1   | Through Cycloaddition/Retrocycloaddition · · · · · · · · · · · · · · · · · · ·                          | 27 |
| <b>2.1.</b> 1.1.2.2.2   | Through Sigmatropic Rearrangement                                                                       | 27 |
| <b>2.1.</b> 1.1.2.2.3   | Through Electrocyclization ·····                                                                        | 29 |
| <b>2.1.</b> 1.1.3       | Proximity-Induced Diels-Alder Reactions                                                                 | 29 |

| XX                  | Table of Contents                                                                                      |    |
|---------------------|--------------------------------------------------------------------------------------------------------|----|
| <b>2.1.</b> 1.2     | Diels-Alder as the Initiator of a Cascade                                                              | 31 |
| <b>2.1.</b> 1.2.1   | Pericyclic Reactions Occurring in the Wake of a Diels–Alder Reaction                                   | 31 |
|                     | Cascades Featuring Diels-Alder/Diels-Alder Processes                                                   | 31 |
| <b>2.1.</b> 1.2.1.1 |                                                                                                        |    |
| <b>2.1.</b> 1.2.1.2 | Cascades Featuring Diels-Alder/Retro-Diels-Alder Processes                                             | 33 |
| <b>2.1.</b> 1.2.1.3 | [4+2] Cycloaddition with Subsequent Desaturation                                                       | 36 |
| <b>2.1.</b> 1.2.2   | Diels-Alder Reactions with Concomitant Ionic Structural Rearrangements · · · ·                         | 36 |
| <b>2.1.</b> 1.2.2.1 | Pairings of Diels–Alder Reactions with Structural Fragmentations                                       | 37 |
| <b>2.1.</b> 1.2.2.2 | Combining a Diels–Alder Reaction with Ionic Cyclization · · · · · · · · · · · · · · · · · · ·          | 40 |
| <b>2.1.</b> 1.3     | Conclusions ·····                                                                                      | 43 |
| <b>2.1.</b> 2       | Domino Reactions Including [2+2], [3+2], or [5+2] Cycloadditions  I. Coldham and N. S. Sheikh          |    |
| <b>2.1.</b> 2       | Domino Reactions Including [2+2], [3+2], or [5+2] Cycloadditions ······                                | 47 |
| <b>2.1.</b> 2.1     | Domino [2+2] Cycloadditions ······                                                                     | 47 |
| <b>2.1.</b> 2.1.1   | Cycloaddition of an Enaminone and $\beta$ -Diketone with Fragmentation $\cdots\cdots$                  | 48 |
| <b>2.1.</b> 2.1.2   | Cycloaddition of Ynolate Anions Followed by Dieckmann Condensation/Michael Reaction                    | 48 |
| <b>2.1.</b> 2.1.3   | Cycloaddition Cascade Involving Benzyne–Enamide Cycloaddition or a Fischer Carbene Complex             | 50 |
| <b>2.1.</b> 2.1.4   | Cycloadditions with Rearrangement                                                                      | 51 |
| <b>2.1.</b> 2.1.4.1 | Cycloaddition of an Azatriene Followed by Cope Rearrangement                                           | 51 |
| <b>2.1.</b> 2.1.4.2 | Cycloaddition of a Propargylic Ether and Propargylic Thioether                                         |    |
|                     | Followed by [3,3]-Sigmatropic Rearrangement                                                            | 52 |
| <b>2.1.</b> 2.1.4.3 | [3,3]-Sigmatropic Rearrangement of Propargylic Ester and Propargylic Acetate Followed by Cycloaddition | 53 |
| <b>2.1.</b> 2.1.4.4 | Cycloaddition of a Ketene Followed by Allylic Rearrangement                                            | 54 |
| <b>2.1.</b> 2.1.4.5 | Allyl Migration in Ynamides Followed by Cycloaddition                                                  | 55 |
| <b>2.1.</b> 2.1.4.6 | 1,3-Migration in Propargyl Benzoates Followed by Cycloaddition · · · · · · · · · · · · · · · · · · ·   | 56 |
| <b>2.1.</b> 2.2     | Domino [3+2] Cycloadditions ······                                                                     | 57 |
| <b>2.1.</b> 2.2.1   | Cycloadditions with Nitrones, Nitronates, and Nitrile Oxides                                           | 57 |
| <b>2.1.</b> 2.2.1.1 | Reaction To Give a Nitrone Followed by Cycloaddition                                                   | 58 |
| <b>2.1.</b> 2.2.1.2 | Cycloaddition with a Nitrone and Subsequent Reaction                                                   | 62 |
| <b>2.1.</b> 2.2.1.3 | Reaction To Give a Nitronate Followed by Cycloaddition                                                 | -  |
| <b>2.1.</b> 2.2.1.4 | Reaction To Give a Nitrile Oxide Followed by Cycloaddition                                             | 64 |
| <b>2.1.</b> 2.2.1.5 | Cycloaddition with a Nitrile Oxide and Subsequent Reaction                                             |    |

| <b>2.1.</b> 2.2.2   | Cycloadditions with Carbonyl Ylides                                                                            | 66  |
|---------------------|----------------------------------------------------------------------------------------------------------------|-----|
| <b>2.1.</b> 2.2.2.1 | Reaction of an α-Diazo Compound To Give a Carbonyl  Ylide Followed by Cycloaddition                            | 66  |
| <b>2.1.</b> 2.2.2.2 | Reaction of an Alkyne To Give a Carbonyl Ylide Followed by Cycloaddition                                       | 72  |
| <b>2.1.</b> 2.2.3   | Cycloadditions with Azomethine Ylides                                                                          | 73  |
| <b>2.1.</b> 2.2.4   | Cycloadditions with Azomethine Imines                                                                          | 80  |
| <b>2.1.</b> 2.2.5   | Cycloadditions with Azides                                                                                     | 81  |
| <b>2.1.</b> 2.2.5.1 | Reaction To Give an Azido-Substituted Alkyne Followed by Cycloaddition · · · ·                                 | 81  |
| <b>2.1.</b> 2.2.5.2 | Cycloaddition of an Azide and Subsequent Reaction                                                              | 83  |
| <b>2.1.</b> 2.3     | Domino [5+2] Cycloadditions ·····                                                                              | 84  |
| <b>2.1.</b> 2.3.1   | Cycloaddition of a Vinylic Oxirane Followed by Claisen Rearrangement                                           | 85  |
| <b>2.1.</b> 2.3.2   | Cycloaddition of an Ynone Followed by Nazarov Cyclization                                                      | 86  |
| <b>2.1.</b> 2.3.3   | Cycloaddition of an Acetoxypyranone Followed by Conjugate Addition                                             | 86  |
| <b>2.1.</b> 2.3.4   | Cycloaddition Cascade Involving γ-Pyranone and Quinone Systems                                                 | 87  |
| <b>2.1.</b> 3       | Domino Transformations Involving an Electrocyclization Reaction J. Suffert, M. Gulea, G. Blond, and M. Donnard |     |
| 2.1.3               | Domino Transformations Involving an Electrocyclization Reaction                                                | 93  |
| <b>2.1.</b> 3.1     | Metal-Mediated Cross Coupling Followed by Electrocyclization · · · · · · · · · · · · · · · · · · ·             | 93  |
| <b>2.1.</b> 3.1.1   | Palladium-Mediated Cross Coupling/Electrocyclization Reactions · · · · · · · · · · · · · · · · · · ·           | 93  |
| <b>2.1.</b> 3.1.1.1 | Cross Coupling/6π-Electrocyclization ······                                                                    | 93  |
| <b>2.1.</b> 3.1.1.2 | Cross Coupling/8π-Electrocyclization ······                                                                    | 101 |
| <b>2.1.</b> 3.1.1.3 | Cross Coupling/8π-Electrocyclization/6π-Electrocyclization · · · · · · · · · · · · · · · · · · ·               | 103 |
| <b>2.1.</b> 3.1.2   | Copper-Catalyzed Tandem Reactions                                                                              | 109 |
| <b>2.1.</b> 3.1.3   | Zinc-Catalyzed Tandem Reactions                                                                                | 109 |
| <b>2.1.</b> 3.1.4   | Ruthenium-Catalyzed Formal [2+2+2] Cycloaddition Reactions                                                     | 110 |
| <b>2.1.</b> 3.2     | Alkyne Transformation Followed by Electrocyclization                                                           | 111 |
| <b>2.1.</b> 3.3     | Isomerization Followed by Electrocyclization · · · · · · · · · · · · · · · · · · ·                             | 116 |
| <b>2.1.</b> 3.3.1   | 1,3-Hydrogen Shift/Electrocyclization ·····                                                                    | 116 |
| <b>2.1.</b> 3.3.2   | 1,5-Hydrogen Shift/Electrocyclization ·····                                                                    | 117 |
| <b>2.1.</b> 3.3.3   | 1,7-Hydrogen Shift/Electrocyclization ·····                                                                    | 120 |
| 2.1.3.4             | Consecutive Electrocyclization Reaction Cascades                                                               | 121 |
| <b>2.1.</b> 3.5     | Alkenation Followed by Electrocyclization                                                                      | 123 |
| <b>2.1.</b> 3.6     | Electrocyclization Followed by Cycloaddition ·····                                                             | 126 |
| <b>2.1.</b> 3.7     | Miscellaneous Reactions                                                                                        | 127 |
| <b>2.1.</b> 3.7.1   | Electrocyclization/Oxidation ·····                                                                             | 127 |
| <b>2.1.</b> 3.7.2   | Photochemical Elimination/Electrocyclization                                                                   | 128 |

| XXII                | Table of Contents                                                                                                                     |     |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>2.1.</b> 3.7.3   | Domino Retro-electrocyclization Reactions · · · · · · · · · · · · · · · · · · ·                                                       | 130 |
| <b>2.1.</b> 3.8     | Hetero-electrocyclization · · · · · · · · · · · · · · · · · · ·                                                                       | 130 |
| <b>2.1.</b> 3.8.1   | Aza-electrocyclization ······                                                                                                         | 130 |
| <b>2.1.</b> 3.8.1.1 | Metal-Mediated Reaction/Hetero-electrocyclization ·····                                                                               | 131 |
| <b>2.1.</b> 3.8.1.2 | Imine or Iminium Formation/Hetero-electrocyclization ·····                                                                            | 139 |
| <b>2.1.</b> 3.8.1.3 | Isomerization or Rearrangement/Hetero-electrocyclization · · · · · · · · · · · · · · · · · · ·                                        | 144 |
| <b>2.1.</b> 3.8.2   | Oxa-electrocyclization ······                                                                                                         | 150 |
| <b>2.1.</b> 3.8.3   | Thia-electrocyclization · · · · · · · · · · · · · · · · · · ·                                                                         | 154 |
| 2.1.4               | Sigmatropic Shifts and Ene Reactions (Excluding [3,3]) A. V. Novikov and A. Zakarian                                                  |     |
| 2.1.4               | Sigmatropic Shifts and Ene Reactions (Excluding [3,3])                                                                                | 159 |
| <b>2.1.</b> 4.1     | Practical Considerations                                                                                                              | 159 |
| <b>2.1.</b> 4.2     | Domino Processes Initiated by Ene Reactions                                                                                           | 160 |
| <b>2.1.</b> 4.3     | Domino Processes Initiated by [2,3]-Sigmatropic Rearrangements                                                                        | 168 |
| 2.1.4.4             | Domino Processes Initiated by Other Sigmatropic Rearrangements                                                                        | 178 |
| <b>2.1.</b> 4.5     | Domino Processes in the Synthesis of Natural Products                                                                                 | 183 |
| <b>2.1.</b> 4.6     | Conclusions · · · · · · · · · · · · · · · · · · ·                                                                                     | 191 |
| <b>2.1.</b> 5       | Domino Transformations Initiated by or Proceeding Through [3,3]-Sigmatropic Rearrangements C. A. Guerrero                             |     |
| <b>2.1.</b> 5       | Domino Transformations Initiated by or Proceeding Through [3,3]-Sigmatropic Rearrangements                                            | 195 |
| <b>2.1.</b> 5.1     | Cope Rearrangement Followed by Enolate Functionalization                                                                              | 196 |
| <b>2.1.</b> 5.1.1   | Anionic Oxy-Cope Rearrangement Followed by Intermolecular Enolate Alkylation with Alkyl Halides                                       | 196 |
| <b>2.1.</b> 5.1.2   | Anionic Oxy-Cope Rearrangement Followed by Enolate Alkylation by Pendant Allylic Ethers                                               | 198 |
| <b>2.1.</b> 5.1.3   | Anionic Oxy-Cope Rearrangement Followed by Enolate Acylation                                                                          | 199 |
| <b>2.1.</b> 5.2     | Aza- and Oxonia-Cope-Containing Domino Sequences                                                                                      | 201 |
| <b>2.1.</b> 5.2.1   | Ionization-Triggered Oxonia-Cope Rearrangement Followed by Intramolecular Nucleophilic Trapping by an Enol Silyl Ether                | 201 |
| <b>2.1.</b> 5.2.2   | Intermolecular 1,4-Addition-Triggered Oxonia-Cope Rearrangement Followed by Intramolecular Nucleophilic Trapping by a Nascent Enolate | 203 |
| <b>2.1.</b> 5.2.3   | Iminium-lon-Formation-Triggered Azonia-Cope Rearrangement Followed by Intramolecular Nucleophilic Trapping by a Nascent Enamine       | 204 |

| Table of Contents | XXIII |
|-------------------|-------|
|-------------------|-------|

| <b>2.1.</b> 5.3   | Double, Tandem Hetero-Cope Rearrangement Processes                                                                                       | 207 |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>2.1.</b> 5.3.1 | Double, Tandem [3,3]-Sigmatropic Rearrangement of Allylic, Homoallylic Bis(trichloroacetimidates)                                        | 207 |
| <b>2.1.</b> 5.4   | Neutral Claisen Rearrangement Followed by Further (Non-Claisen) Processes                                                                | 209 |
| <b>2.1.</b> 5.4.1 | Oxy-Cope Rearrangement/Ene Reaction Domino Sequences                                                                                     | 209 |
| <b>2.1.</b> 5.4.2 | Oxy-Cope Rearrangement/Ene Reaction/Claisen Rearrangement and Oxy-Cope Rearrangement/Claisen Rearrangement/Ene Reaction Domino Sequences | 211 |
| <b>2.1.</b> 5.5   | Claisen Rearrangement Followed by Another Pericyclic Process                                                                             | 213 |
| <b>2.1.</b> 5.5.1 | Double, Tandem Bellus-Claisen Rearrangement Reactions                                                                                    | 213 |
| <b>2.1.</b> 5.5.2 | Claisen Rearrangement Followed by [2,3]-Sigmatropic Rearrangement                                                                        | 215 |
| <b>2.1.</b> 5.5.3 | Claisen Rearrangement/Diels-Alder Cycloaddition Domino Sequences                                                                         | 217 |
| <b>2.1.</b> 5.5.4 | Claisen Rearrangement/[1,5]-H-Shift/6π-Electrocyclization Domino Sequences                                                               | 220 |
| <b>2.1.</b> 5.6   | Claisen Rearrangement Followed by Multiple Processes · · · · · · · · · · · · · · · · ·                                                   | 222 |
| <b>2.1.</b> 5.6.1 | Propargyl Claisen Rearrangement Followed by Tautomerization, Acylketene Generation, 6π-Electrocyclization, and Aromatization             | 222 |
| <b>2.1.</b> 5.6.2 | Propargyl Claisen Rearrangement Followed by Imine Formation, Tautomerization, and $6\pi$ -Electrocyclization                             | 223 |
| 2.2               | Intermolecular Alkylative Dearomatizations of Phenolic Derivatives in Organic Synthesis J. A. Porco, Jr., and J. Boyce                   |     |
| 2.2               | Intermolecular Alkylative Dearomatizations of Phenolic Derivatives in Organic Synthesis                                                  | 229 |
| 2.2.1             | Metal-Mediated Intermolecular Alkylative Dearomatization                                                                                 | 232 |
| 2.2.1.1           | Osmium(II)-Mediated Intermolecular Alkylative Dearomatization                                                                            | 232 |
| <b>2.2.</b> 1.2   | Palladium-Catalyzed Intermolecular Alkylative Dearomatization · · · · · · · · · · · · · · · · · · ·                                      | 236 |
| <b>2.2.</b> 1.3   | Tandem Palladium-Catalyzed Intermolecular Alkylative Dearomatization/Annulation                                                          | 237 |
| 2.2.2             | Non-Metal-Mediated Intermolecular Alkylative Dearomatization                                                                             | 240 |
| <b>2.2.</b> 2.1   | Alkylative Dearomatizations of Phenolic Derivatives with Activated Electrophiles                                                         | 240 |
| <b>2.2.</b> 2.2   | Alkylative Dearomatizations of Phenolic Derivatives with Unactivated Electrophiles                                                       | 248 |

.

| KXIV              | Table of Contents                                                                                                       |     |
|-------------------|-------------------------------------------------------------------------------------------------------------------------|-----|
| -                 |                                                                                                                         |     |
| <b>2.2.</b> 3     | Tandem Intermolecular Alkylative Dearomatization/Annulation                                                             | 252 |
| <b>2.2.</b> 3.1   | Tandem Alkylative Dearomatization/[4+2] Cycloaddition ·····                                                             | 252 |
| <b>2.2.</b> 3.2   | Tandem Alkylative Dearomatization/Hydrogenation Followed by Lewis Acid Catalyzed Cyclization                            | 252 |
| <b>2.2.</b> 3.3   | Tandem Alkylative Dearomatization/Annulation To Access Type A and B Polyprenylated Acylphloroglucinol Derivatives       | 254 |
| <b>2.2.</b> 3.4   | Enantioselective, Tandem Alkylative Dearomatization/Annulation                                                          | 260 |
| <b>2.2.</b> 3.5   | Tandem Alkylative Dearomatization/Radical Cyclization · · · · · · · · · · · · · · · · · · ·                             | 263 |
| 2.2.4             | Recent Methods for Alkylative Dearomatization of Phenolic Derivatives                                                   | 268 |
| <b>2.2.</b> 4.1   | Recent Applications to Intermolecular Alkylative Dearomatization of Naphthols                                           | 268 |
| <b>2.2.</b> 4.2   | Dearomatization Reactions as Domino Transformations To Access  Type A and B Polyprenylated Acylphloroglucinol Analogues | 281 |
| 2.3               | Additions to Alkenes and C=O and C=N Bonds                                                                              |     |
| 2.3.1             | Additions to Nonactivated C=C Bonds  Z. W. Yu and YY. Yeung                                                             | -   |
| 2.3.1             | Additions to Nonactivated C=C Bonds ······                                                                              | 293 |
| <b>2.3.</b> 1.1   | Domino Amination · · · · · · · · · · · · · · · · · · ·                                                                  | 294 |
| <b>2.3.</b> 1.1.1 | Proton-Initiated Events ·····                                                                                           | 294 |
| <b>2.3.</b> 1.1.2 | Transition-Metal-Initiated Events                                                                                       | 295 |
| <b>2.3.</b> 1.1.3 | Halogen-Initiated Events · · · · · · · · · · · · · · · · · · ·                                                          | 298 |
| <b>2.3.</b> 1.2   | Domino Etherification                                                                                                   | 305 |
| <b>2.3.</b> 1.2.1 | Halogen-Initiated Events ······                                                                                         | 306 |
| <b>2.3.</b> 1.3   | Domino Carbonylation · · · · · · · · · · · · · · · · · · ·                                                              | 317 |
| <b>2.3.</b> 1.3.1 | Transition-Metal-Initiated Events                                                                                       | 317 |
| <b>2.3.</b> 1.3.2 | Halogen-Initiated Events · · · · · · · · · · · · · · · · · · ·                                                          | 320 |
| <b>2.3.</b> 1.4   | Domino Polyene Cyclization · · · · · · · · · · · · · · · · · · ·                                                        | 322 |
| <b>2.3.</b> 1.4.1 | Transition-Metal-Initiated Events                                                                                       | 323 |
| <b>2.3.</b> 1.4.2 | Halogen-Initiated Events · · · · · · · · · · · · · · · · · · ·                                                          | 325 |
| <b>2.3.</b> 1,4,3 | Chalcogen-Initiated Events · · · · · · · · · · · · · · · · · · ·                                                        | 329 |

.

-

•

Table of Contents XXV

| <b>2.3.</b> 2       | Organocatalyzed Addition to Activated C—C Bonds P. Renzi, M. Moliterno, R. Salvio, and M. Bella |     |
|---------------------|-------------------------------------------------------------------------------------------------|-----|
| <b>2.3.</b> 2       | Organocatalyzed Addition to Activated C=C Bonds ·····                                           | 337 |
| <b>2.3.</b> 2.1     | Organocatalyzed Domino Reactions with Activated Alkenes: The First Examples                     | 337 |
| <b>2.3.</b> 2.1.1   | Prolinol Trimethylsilyl Ethers as Privileged Catalysts for Enamine and Iminium Ion Activation   | 344 |
| <b>2.3.</b> 2.1.2   | Increasing Complexity in Organocatalyzed Domino Reactions                                       | 347 |
| <b>2.3.</b> 2.2     | Domino Organocatalyzed Reactions of Oxindole Derivatives                                        | 349 |
| <b>2.3.</b> 2.2.1   | From Enders' Domino Reactions to Melchiorre's Methylene Oxindole                                | 350 |
| <b>2.3.</b> 2.2.2   | Michael Addition to Oxindoles · · · · · · · · · · · · · · · · · · ·                             | 357 |
| <b>2.3.</b> 2.3     | Synthesis of Tamiflu: The Hayashi Approach                                                      | 365 |
| <b>2.3.</b> 2.4 ·   | One-Pot Synthesis of ABT-341, a DPP4-Selective Inhibitor                                        | 372 |
| <b>2.3.</b> 2.5     | Large-Scale Industrial Application of Organocatalytic Domino Reactions: A Case Study            | 376 |
| <b>2.3.</b> 2.5.1   | Transferring Organocatalytic Reactions from Academia to Industry:  Not Straightforward          | 376 |
| <b>2.3.</b> 2.5.2   | The Reaction Developed in the Academic Environment                                              | 377 |
| <b>2.3.</b> 2.5.3   | The Reaction Developed in the Industrial Environment                                            | 379 |
| <b>2.3.</b> 3       | Addition to Monofunctional C=O Bonds A. Song and W. Wang                                        |     |
| <b>2.3.</b> 3       | Addition to Monofunctional C=O Bonds ·····                                                      | 387 |
| <b>2.3.</b> 3.1     | Transition-Metal-Catalyzed Domino Addition to C=O Bonds · · · · · · · · · · · · · · · · · · ·   | 387 |
| <b>2.3.</b> 3.1.1   | Domino Reactions Involving Carbonyl Ylides                                                      | 387 |
| <b>2.3.</b> 3.1.2   | Reductive Aldol Reactions · · · · · · · · · · · · · · · · · · ·                                 | 389 |
| <b>2.3.</b> 3.1.3   | Michael/Aldol Reactions · · · · · · · · · · · · · · · · · · ·                                   | 393 |
| <b>2.3.</b> 3.1.4   | Other Domino Addition Reactions · · · · · · · · · · · · · · · · · · ·                           | 394 |
| <b>2.3.</b> 3.2     | Organocatalytic Domino Addition to C=O Bonds · · · · · · · · · · · · · · · · · · ·              | 395 |
| <b>2.3.</b> 3.2.1   | Amine-Catalyzed Domino Addition to C=O Bonds · · · · · · · · · · · · · · · · · · ·              | 395 |
| <b>2.3.</b> 3.2.1.1 | Enamine-Catalyzed Aldol/Aldol Reactions · · · · · · · · · · · · · · · · · · ·                   | 395 |
| <b>2.3.</b> 3.2.1.2 | Enamine-Catalyzed Aldol/Michael Reactions · · · · · · · · · · · · · · · · · · ·                 | 396 |
| <b>2.3.</b> 3.2.1.3 | Enamine-Catalyzed Diels-Alder Reactions · · · · · · · · · · · · · · · · · · ·                   | 397 |
| <b>2.3.</b> 3.2.1.4 | Enamine-Catalyzed Michael/Henry Reactions · · · · · · · · · · · · · · · · · · ·                 | 399 |
| <b>2.3.</b> 3.2.1.5 | Enamine-Catalyzed Michael/Aldol Reactions · · · · · · · · · · · · · · · · · · ·                 | 400 |
| <b>2.3.</b> 3.2.1.6 | Enamine-Catalyzed Michael/Hemiacetalization Reactions · · · · · · · · · · · · · · · · · · ·     | 400 |
| <b>2.3.</b> 3.2.1.7 | Iminium-Catalyzed Michael/Aldol Reactions · · · · · · · · · · · · · · · · · · ·                 |     |

| XXVI                 | Table of Contents                                                                               |     |
|----------------------|-------------------------------------------------------------------------------------------------|-----|
| -                    |                                                                                                 |     |
| <b>2.3.</b> 3.2.1.8  | Iminium-Catalyzed Michael/Henry Reactions ······                                                | 404 |
| <b>2.3.</b> 3.2.1.9  | Iminium-Catalyzed Michael/Morita-Baylis-Hillman Reactions · · · · · · · · · · · · · · · · · · · | 404 |
| <b>2.3.</b> 3.2.1.10 | Iminium-Catalyzed Michael/Hemiacetalization Reactions · · · · · · · · · · · · · · · · · · ·     | 405 |
| <b>2.3.</b> 3.2.2    | Thiourea-Catalyzed Domino Addition to C=O Bonds · · · · · · · · · · · · · · · · · · ·           | 405 |
| <b>2.3.</b> 3.2.2.1  | Aldol/Cyclization Reactions · · · · · · · · · · · · · · · · · · ·                               | 405 |
| <b>2.3.</b> 3.2.2.2  | Michael/Aldol Reactions ······                                                                  | 406 |
| <b>2.3.</b> 3.2.2.3  | Michael/Henry Reactions ·····                                                                   | 407 |
| <b>2.3.</b> 3.2.2.4  | Michael/Hemiacetalization Reactions · · · · · · · · · · · · · · · · · · ·                       | 408 |
| <b>2.3.</b> 3.2.3    | Phosphoric Acid Catalyzed Domino Addition to C=O Bonds                                          | 410 |
| <b>2.3.</b> 3.3      | Lewis Acid Catalyzed Domino Addition to C=O Bonds ······                                        | 411 |
| <b>2.3.</b> 3.4      | Conclusions ·····                                                                               | 414 |
| 2.3.4                | Additions to C=N Bonds and Nitriles                                                             |     |
|                      | E. Kroon, T. Zarganes Tzitzikas, C. G. Neochoritis, and A. Dömling                              | _   |
| 2.3.4                | Additions to C=N Bonds and Nitriles ······                                                      | 419 |
| <b>2.3.</b> 4.1      | Addition to C=N Bonds and the Pictet-Spengler Strategy · · · · · · · · · · · · · · · · · · ·    | 422 |
| <b>2.3.</b> 4.2      | Ugi Five-Center Four-Component Reaction Followed by Postcondensations $ \cdot \cdot $           | 428 |
| <b>2.3.</b> 4.3      | Addition to Nitriles · · · · · · · · · · · · · · · · · · ·                                      | 439 |
|                      | Keyword Index ······                                                                            | 449 |