Contents

Volume 1

Preface :	— v
-----------	-----

1	Units in group rings: an introduction —— 1
1.1	Constructions of units: elementary matrices and bicyclic units — 2
1.2	Construction of units: cyclotomic units and Bass units —— 5
1.3	Examples: unit groups of some orders in number fields — 9
1.4	Examples: unit groups of some non-commutative orders —— 14
1.5	Examples: group rings of groups of small order —— 20
1.6	Finite rings —— 28
2	Representations of algebras —— 32
2.1	Semisimple algebras —— 32
2.2	Splitting fields —— 42
2.3	Characteristic polynomial, trace and norm —— 46
2.4	Brauer group —— 55
2.5	Cohomology —— 57
2.6	Crossed products —— 64
3	Wedderburn decomposition of semisimple group algebras — 73
3.1	Representations and characters of finite groups —— 74
3.2	Some operations with characters —— 81
3.3	Wedderburn components from character tables —— 85
3.4	Wedderburn components from monomial characters —— 92
3.5	Strongly monomial characters —— 102
3.6	Induction theorems —— 112
3.7	Brauer-Witt Theorem —— 114
3.8	Examples 120
4	Dedekind domains, valuations and orders —— 123
4.1	Localization and algebraic integers — 123
4.2	Dedekind domains —— 130
4.3	Finitely generated modules over Dedekind domains —— 137
4.4	Extensions of Dedekind domains —— 142
4.5	Valuations —— 146
4.6	Orders —— 152
4.7	The discriminant —— 157

Brauer group of a number field —— 160

4.8

```
The group of units of an order — 170
5
5.1
            Lattices in real vector spaces --- 170
5.2
            Hey's Theorem and Dirichlet's Unit Theorem --- 173
5.3
            The group of units of an order is finitely generated — 179
5.4
            The group of units of an order is finitely presented — 194
            Subgroups of finite index — 198
5.5
6
        Cyclotomic integers ---- 205
6.1
            Cyclotomic fields --- 205
            Cyclotomic units — 208
6.2
7
        Central units --- 226
7.1
            The group of central units of an order — 226
7.2
            Large subgroups of central units: an algorithm - 237
7.3
            Bass units as generators of large groups of units -- 248
        Generic units - 255
8
8.1
            Shifted cyclotomic polynomials — 256
8.2
            The group of generic units — 262
            A logarithm function — 265
8.3
            A basis of generic units for a subgroup of finite index in \mathcal{U}(\mathbb{Z}C_n) — 272
8.4
            Polynomials of small degree defining units — 276
8.5
9
        K-theory --- 282
9.1
            Grothendieck group - 282
            The Whitehead group --- 284
9.2
            Stable range condition — 292
9.3
            Whitehead group and the stable range condition --- 295
9.4
            Applications of K-theory to units --- 303
9.5
10
        General linear groups of degree 2 — 312
10.1
            Number theoretical results -- 313
            Normality of E_2(I_1 \times I_2) in SL_2(R, I_1 \times I_2) — 314
10.2
            The factor group SL_2(R, I_1 \times I_2) by E_2(I_1 \times I_2) — 319
10.3
10.4
            The group E_2(I) is of finite index in SL_2(R) — 326
        Generators of unit groups of group rings — 337
11
11.1
            Bass Unit Theorem — 337
11.2
            Generalized bicyclic units and Bass units I --- 341
11.3
            Bicyclic units and Bass units — 345
            Fixed point free groups and Frobenius complements — 348
11.4
            Group rings of nilpotent groups — 355
11.5
```

12	Exceptional simple components —— 359
12.1	Components of index one —— 359
12.2	Components of index two 366
12.3	Generalized bicyclic units and Bass units !! —— 373
12.4	Normal closure of the trivial units —— 375
12.5	Normal complements —— 380
12.6	Examples: metacyclic groups —— 383
12.7	Examples with insufficient Bass units and bicyclic units —— 390
13	Idempotents and central units in group rings —— 392
13.1	Central subgroups and abelian-by-supersolvable groups —— 392
13.2	Independent units and abelian-by-supersolvable groups —— 397
13.3	Central subgroups and strongly monomial groups —— 400
13.4	Independent units and strongly monomial groups —— 402
13.5	Primitive idempotents and nilpotent groups — 408
13.6	Primitive idempotents and strongly monomial groups —— 416
13.7	Some metacyclic groups —— 420

References — 425

Index of Notation —— 435

Index --- 439