TABLE OF CONTENTS

FOREWORD	xiii
PREFACE	XV
NOTATIONS	xix
NOTATIONS	AIA
Chapter 1	
INTRODUCTION	1
1.1. Relations between different Eurocodes	1
1.2. Scope of EN 1993-1-2	3
1.3. Layout of the book	3
Chapter 2	
MECHANICAL LOADING	7
2.1. General	7
2.1.1. General rule	7
2.1.2. Simplification 1	10
2.1.3. Simplification 2	10
2.1.4. Simplification 3	12
2.2. Examples	13
2.3. Indirect actions	14
Chapter 3	
THERMAL ACTION	17
3.1. General	17
3.2. Nominal temperature-time curves	18
3.3. Parametric temperature-time curves	21
3.4. Zone models	29
3.5. CFD models	31
3.6. Localised fires	32
3.7. External members	39

Chapter 4	
TEMPERATURE IN STEEL SECTIONS	45
4.1. Introduction	45
4.2. The heat conduction equation and its boundary conditions	45
4.3. Advanced calculation model. Finite element solution of	
the heat conduction equation	47
4.3.1. Temperature field using the finite element method	48
4.4. Section factor	51
4.5. Temperature of unprotected steelwork exposed to fire	54
4.6. Temperature of protected steelwork exposed to fire	61
4.7. Internal steelwork in a void protected by heat screens	76
4.8. External steelwork	78
4.8.1. General principles	78
4.8.2. Example	80
4.9. View factors in the concave part of a steel profile	88
4.10. Temperature in steel members subjected to localised fires	92
4.10.1. Unprotected steel members	92
4.10.2. Protected steel members	93
4.10.3. Thermal response of steel members in case of multiple	
localised fires	95
4.10.3.1. Multiple localised fires due to simultaneously	
burning cars: an example of a car park	95
4.10.3.1.1. Characterization of the fire and definition of the fi	
scenarios	95
4.10.3.1.2. Temperature of the main beam	98
4.11. Temperature in stainless steel members	101
4.11.1. Example	104
Chapter 5	
MECHANICAL ANALYSIS	105
5.1. Basic principles	105
5.2. Mechanical properties of carbon steel	110
5.3. Classification of cross sections	115

	5.3.1. Cross section under combined bending and axial-compression	ì
	at normal temperature	120
	5.3.1.1. First methodology for Class 1 and Class 2 cross sections	123
	5.3.1.2. Second methodology for the case of Class 1 and	
	Class 2 cross sections	125
	5.3.1.3. First methodology for Class 3 cross sections	127
	5.3.1.4. Second methodology for Class 3 cross sections	128
	5.3.1.5. Advantages and disadvantages of the two presented	
	methodologies	130
	5.3.2. Cross section under combined bending and tension at normal	
	temperature	132
	5.3.3. Classification under fire conditions	132
	Effective cross section	134
5.5.	Fire resistance of structural members	136
	5.5.1. General	136
	5.5.2. Members with Class 4 cross sections	138
	5.5.3. Tension members	139
	5.5.4. Compression members	140
	5.5.5. Shear resistance	143
	5.5.6. Laterally restrained beams	145
	5.5.6.1. Uniform temperature distribution	145
	5.5.6.2. Non-uniform temperature distribution	147
	5.5.6.3. Bending and shear	150
	5.5.7. Laterally unrestrained beams	152
	5.5.7.1. The elastic critical moment for lateral-torsional buckling	152
	5.5.7.2. Resistance to lateral-torsional buckling	156
	5.5.8. Members subjected to combined bending and axial compression	159
	5.5.9. Some verifications of the fire resistance not covered by	
	EN 1993-1-2	163
	5.5.9.1. Shear buckling resistance for web without intermediate	
	stiffeners	163
	5.5.9.2. Cross section verification of a member subjected to	
	combined bending and axial force (compression or tension)	164

TABLE OF CONTENTS

5.5.9.2.1. Class 1 and 2 rectangular solid sections	165
5.5.9.2.2. Class 1 and 2 doubly symmetric I- and H-sections	166
5.5.9.2.3. Class 3 doubly symmetric I- and H-sections	168
5.5.9.2.4. Class 4 cross sections	169
5.5.9.3. Bending, shear and axial force	169
5.6. Design in the temperature domain. Critical temperature	170
5.7. Design of continuous beams	180
5.7.1. General	180
5.7.2. Continuous beams at room temperature	181
5.7.3. Continuous beams under fire conditions	184
5.8. Fire resistance of structural stainless steel members	186
5.9. Design examples	193
Chapter 6	
Chapter 6 ADVANCED CALCULATION MODELS	273
6.1. General	273
	275
6.2. Thermal response model	
6.3. Mechanical response model	282
6.4. Some comparisons between the simple and the advanced calculation models	200
	288
6.4.1. Shadow factor	289
6.4.2. Buckling curves	293
6.4.3. Factor κ ₂	295
6.4.4. Factor κ_1	296
Chapter 7	
JOINTS	299
7.1. General	299
7.2. Strength of bolts and welds at elevated temperature	300
7.3. Temperature of joints in fire	301
7.4. Bolted connections	302
7.4.1. Design fire resistance of bolts in shear	303

viii

	1	

	7.4.1.1. 6	202
	7.4.1.1. Category A: Bearing type	303
	7.4.1.2. Category B (slip resistance at serviceability) and	
	Category C (slip resistance at ultimate state)	303
7.4.2	. Design fire resistance of bolts in tension	303
	7.4.2.1. Category D and E: Non-preloaded and preloaded bolts	303
7.5. Desi	gn fire resistance of welds	304
7.5.1	. Butt welds	304
7.5.2	. Fillet welds	304
7.6. Desi	gn examples	304
Chapter	8	
гне со	MPUTER PROGRAM "ELEFIR-EN"	315
8.1. Gen	eral	315
8.2. Brie	f description of the program	316
8.2.1	. Available thermal calculations	316
8.2.2	. Available mechanical calculations	322
8.3. Defa	ult constants used in the program	329
8.4. Desi	gn example	329
Chapter	9	
CASE S	TUDY	343
9.1. Des	cription of the case study	343
9.2. Fire	resistance under standard fire	344
9.2.1	. Thermal calculations	344
9.2.2	. Structural calculation	345
	9.2.2.1. Loading	345
	9.2.2.2. Fire resistance by the simple calculation model	349
	9.2.2.3. Fire resistance by the general calculation model	351
	resistance under natural fire	353
	. Temperature development in the compartment	353
REFERI	ENCES	359

Х

Annex A	
THERMAL DATA FOR CARBON STEEL AND STAINLESS	
STEEL SECTIONS	369
A.1. Thermal properties of carbon steel	369
A.1.1. Specific heat	369
A.1.2. Thermal conductivity	370
A.1.3. Thermal elongation	371
A.2. Section factor A_m/V [m ⁻¹] for unprotected steel members	372
A.3. Section factor A_p/V [m ⁻¹] for protected steel members	374
A.4. Tables and nomograms for evaluating the temperature in	
unprotected steel members subjected to the standard fire curve ISO 834	375
A.5. Tables and nomograms for evaluating the temperature in	
protected steel members subjected to the standard fire curve ISO 834	380
A.6. Thermal properties of some fire protection materials	384
A.7. Thermal properties of stainless steel	385
A.7.1. Specific heat	385
A.7.2. Thermal conductivity	385
A.7.3. Thermal elongation	386
A.8. Tables and nomograms for evaluating the temperature in unprotected stainless steel members subjected to the standard fire	
curve ISO 834	38′
A.9. Thermal properties of some fire compartment lining materials	394
Annex B	
INPUT DATA FOR NATURAL FIRE MODELS	39:
B.1. Introduction	39:
B.2. Fire load density	39:
B.3. Rate of heat release density	398
B.4. Ventilation control	40.
B.5. Flash-over	400

Annex C MECHANICAL PROPERTIES OF CARBON STEEL AT	ND.
STAINLESS STEEL	407
C.1 Mechanical properties of carbon steel	407
C.1.1. Mechanical properties of carbon steel at room	
temperature (20°C)	407
C.1.2. Stress-strain relationship for carbon steel at elevat	ted
temperatures (without strain-hardening)	410
C.1.3. Stress-strain relationship for carbon steel at elevation	ted
temperatures (with strain-hardening)	418
C.1.4. Mechanical properties to be used with Class 4 cro	ss sections
and simple calculation models	419
C.2. Mechanical properties of stainless steel	421
Annex D TABLES FOR SECTION CLASSIFICATION AND	
EFFECTIVE WIDTH EVALUATION	429
Annex E SECTION FACTORS OF EUROPEAN HOT ROLLED IPE AND HE PROFILES	435
Annex F CROSS SECTIONAL CLASSIFICATION OF THE	
HOT ROLLED IPE AND HE PROFILES	443
F.1. Cross sectional classification for pure compression and pure	•
F.2. Cross sectional classification for combined compression an	
moment	450