

Contents

Preface to English Edition — IX

Preface — XI

Part I: Devices containing a single-link pendulum

1 A pendulum with stationary pivot — 5

- 1.1 Equations of motion — 5
- 1.2 Domain of controllability — 7
- 1.3 Maximizing domain of attraction — 9
- 1.4 Delay in feedback loop — 13
- 1.5 Nonlinear control — 16
- 1.6 Controllability domain of the nonlinear model — 17

2 A pendulum with wheel-based pivot — 21

- 2.1 Equations of motion — 21
- 2.2 Domain of controllability — 24
- 2.3 Maximizing domain of attraction — 27
- 2.4 Nonlinear control — 29

3 A pendulum with a flywheel — 31

- 3.1 The arrangement of the pendulum with a flywheel — 31
- 3.2 Equations of motion — 33
- 3.3 Local stabilization of the pendulum in the top equilibrium — 35
- 3.4 Suppressing flywheel rotation — 41
- 3.5 Swinging and damping the pendulum — 42
- 3.6 Translating the pendulum from the bottom equilibrium into the top one — 45
- 3.7 Numerical experiments — 46
- 3.8 Practical experiments — 47

4 Wheel rolling control by means of a pendulum — 50

- 4.1 Mathematical model — 51
- 4.2 Steady modes of motion — 53
- 4.3 Stability of steady-state modes — 56

5	Optimal swinging and damping of a swing — 58
5.1	On optimal control design in second-order systems — 58
5.2	Mathematical model of a swing — 62
5.3	Maximizing the swing oscillations magnitude — 63
5.4	Minimizing swing oscillation magnitude — 67
5.5	Controlling a swing with regard for aerodynamic resistance and dry friction — 69
6	Pendulum control that minimizes energy consumption — 71
6.1	Estimation of energy consumption — 71
6.2	Translating the pendulum to the unstable equilibrium — 74
6.3	Translating the pendulum to the stable equilibrium — 80
 Part II: Double physical pendulum	
7	Local stabilization of an inverted pendulum by means of a single control torque — 91
7.1	Mathematical model of the pendulum — 91
7.2	Linearized model — 93
7.3	Domains of controllability — 94
7.4	Feedback design. Maximizing domain of attraction — 98
7.5	Numerical experiments — 104
8	Optimal control design for swinging and damping a double pendulum — 110
8.1	Mathematical model — 110
8.2	Reduced angle — 112
8.3	Optimal control that swings the pendulum — 113
8.4	Optimal control law for pendulum damping — 119
8.5	On translating the pendulum from its bottom equilibrium to the top one — 123
9	Global stabilization of an inverted pendulum controlled by torque in the inter-link joint — 126
9.1	Mathematical model — 127
9.2	Cascade form of dynamic equations — 128
9.3	Control law that swings the pendulum — 129
9.4	Tracking the desired inter-link angle dynamics — 130
9.5	Local stabilization of an inverted pendulum — 131
9.6	Numerical experiments — 131

10	Global stabilization of an inverted pendulum controlled by torque in the pivot — 134
10.1	Mathematical model — 134
10.2	Swinging the pendulum — 135
10.3	Straightening the pendulum — 135
10.4	Linear model, local stabilization — 138
10.5	Numerical experiments — 141
11	Multi-link pendulum on a moving base — 145
11.1	Multi-link pendulum on a wheel — 145
11.2	Single-link pendulum on a wheel — 149
11.3	Global stabilization of the inverted pendulum — 151
11.4	Domain of controllability — 155
11.5	Designing time-optimal trajectories — 157
11.6	A pendulum on a cart — 159
11.7	Frequency lowering as a result of constraining — 161

Part III: Ball on a beam

12	Stabilization of a ball on a straight beam — 165
12.1	Mathematical model of the system — 165
12.2	Linearized model — 167
12.3	Feedback design — 169
12.4	Numerical experiments — 171
13	Stabilization of a ball on a curvilinear beam — 176
13.1	Mathematical model of the system — 176
13.2	Linearized model — 178
13.3	Feedback design — 180
13.4	Numerical experiments — 181

Part IV: Gyroscopic stabilization of a two-wheel bicycle

14	Bicycle design — 189
14.1	Bicycle with one controlled wheel — 189
14.2	Bicycle with two controlled wheels — 192
14.3	Gyroscopic stabilizer — 194
14.4	Equations of tilt oscillations of the bicycle — 195

15	Designing a control law to stabilize the bicycle tilt — 198
15.1	Bicycle tilt measurement by means of accelerometers — 198
15.2	Bicycle movement along a straight line — 199
15.3	Motion along a circle — 201
15.4	Numerical and practical experiments — 203

Part V: Avoiding undesired vibrations

16	Bang-bang control and fluent control — 209
16.1	Mathematical model — 210
16.2	Formulation of the problem — 212
16.3	Bang-bang control versus fluent control — 213
17	Trapezoidal control for a system with compliant elements — 217
17.1	Trapezoidal fluent control — 217
17.2	Trapezoidal control with shorter transients — 220
17.3	Relationship between time T and displacement x_d — 223
17.4	Numerical analysis of the open-loop system — 224
17.5	Feedback control — 227
Bibliography — 229	
Index — 237	