Contents

1	Surface and Interface Physics: Its Definition and Importance			1
	Panel	l I:	Ultrahigh Vacuum (UHV) Technology	6
	Panel	l II:	Basics of Particle Optics and Spectroscopy	17
	Probl	lems		28
2	Prep	aration	of Well-Defined Surfaces, Interfaces and Thin Films	29
	2.1	Why Is	s Ultrahigh Vacuum Used?	29
	2.2		ge in UHV	31
	2.3	Ion Bo	mbardment and Annealing	34
	2.4	Evapor	ration and Molecular Beam Epitaxy (MBE)	36
	2.5	Epitax	y by Means of Chemical Reactions	44
	Panel	III:	Auger Electron Spectroscopy (AES)	50
	Panel	IV:	Secondary Ion Mass Spectroscopy (SIMS)	57
	Probl	ems		65
3	Mor	phology	and Structure of Surfaces, Interfaces and Thin Films	67
	3.1		e Stress, Surface Energy, and Macroscopic Shape	67
	3.2		tion, Reconstruction, and Defects	73
	3.3		timensional Lattices, Superstructure, and Reciprocal Space	78
		3.3.1	Surface Lattices and Superstructures	78
		3.3.2	2D Reciprocal Lattice	82
	3.4	Structu	ıral Models of Solid-Solid Interfaces	83
	3.5		ation and Growth of Thin Films	88
		3.5.1	Modes of Film Growth	88
		3.5.2	"Capillary Model" of Nucleation	92
	3.6	Film-C	Frowth Studies: Experimental Methods and Some Results	95
	Panel	V:	Scanning Electron Microscopy (SEM) and Microprobe	
			Techniques	108
	Panel	VI:	Scanning Tunneling Microscopy (STM)	115
	Panel	VII:	Surface Extended X-Ray Absorption Fine Structure	
			(SEXAFS)	125
	Probl	ems		131

digitalisiert durch

xii Contents

4	Scatt	tering from Surfaces and Thin Films	133
	4.1	Kinematic Theory of Surface Scattering	134
	4.2	The Kinematic Theory of Low-Energy Electron Diffraction	139
	4.3	What Can We Learn from Inspection of a LEED Pattern?	142
	4.4	Dynamic LEED Theory, and Structure Analysis	147
		4.4.1 Matching Formalism	148
		4.4.2 Multiple-Scattering Formalism	151
		4.4.3 Structure Analysis	151
	4.5	Kinematics of an Inelastic Surface Scattering Experiment	153
	4.6	Dielectric Theory of Inelastic Electron Scattering	
		4.6.1 Bulk Scattering	158
		4.6.2 Surface Scattering	161
	4.7	Dielectric Scattering on a Thin Surface Layer	168
	4.8	Some Experimental Examples of Inelastic Scattering	
		of Low-Energy Electrons at Surfaces	173
	4.9	The Classical Limit of Particle Scattering	178
	4.10	Conservation Laws for Atomic Collisions: Chemical	
		Surface Analysis	182
	4.11	Rutherford BackScattering (RBS): Channeling and Blocking	185
	Pane	VIII: Low-Energy Electron Diffraction (LEED) and Reflection	
		High-Energy Electron Diffraction (RHEED)	196
	Pane	IX: Electron Energy Loss Spectroscopy (EELS)	205
	Prob	lems	213
5	Surf	ace Phonons	215
	5.1	The Existence of "Surface" Lattice Vibrations on a Linear Chain	
	5.2	Extension to a Three-Dimensional Solid with a Surface	
	5.3	Rayleigh Waves	
	5.4	The Use of Rayleigh Waves as High-Frequency Filters	
	5.5	Surface-Phonon (Plasmon) Polaritons	
	5.6	Dispersion Curves from Experiment	
		and from Realistic Calculations	239
	Pane	X: Atom and Molecular Beam Scattering	
		lems	
6	Elect	tronic Surface States	152
D		Surface States for a Semi-Infinite Chain in the Nearly-Free	233
	6.1	Electron Model	254
	63		
	6.2	Surface States of a 3D Crystal and Their Charging Character	
		6.2.1 Intrinsic Surface States	
	6.2	6.2.2 Extrinsic Surface States	
	6.3	Aspects of Photoemission Theory	
		6.3.1 General Description	
		6.3.2 Angle-Integrated Photoemission	208

Contents xiii

		6.3.3	Bulk- and Surface-State Emission	269
		6.3.4	Symmetry of Initial States and Selection Rules	
		6.3.5	Many-Body Aspects	
	6.4	Some 3	Surface-State Band Structures for Metals	
		6.4.1	s- and p-like Surface States	276
		6.4.2	<i>d</i> -like Surface States	281
		6.4.3	Empty and Image-Potential Surface States	285
	6.5	Surfac	e States on Semiconductors	289
		6.5.1	Elemental Semiconductors	
		6.5.2	III-V Compound Semiconductors	
		6.5.3	Group III Nitrides	
		6.5.4	II-VI Compound Semiconductors	
	Panel		Photoemission and Inverse Photoemission	
	Probl	ems		322
7	Spac	e-Char	ge Layers at Semiconductor Interfaces	323
	7.1	Origin	and Classification of Space-Charge Layers	323
	7.2		chottky Depletion Space-Charge Layer	
	7.3		Space-Charge Layers	
	7.4	Space-	Charge Layers on Highly Degenerate Semiconductors	332
	7.5		eneral Case of a Space-Charge Layer	
		and Fe	ermi-level Pinning	. 334
	7.6		ized Accumulation and Inversion Layers	
	7.7	Some	Particular Interfaces and Their Surface Potentials	343
	7.8		licon MOS Field-Effect Transistor	
	7.9		etic Field Induced Quantization	
			Dimensional Plasmons	
			Optical Surface Techniques	
	Prob	lems		376
8	Meta	al–Semi	iconductor Junctions and Semiconductor	
	Hete	rostruc	etures	377
	8.1		al Principles Governing the Electronic Structure	
		of Soli	id-Solid Interfaces	. 377
	8.2	Metal-	Induced Gap States (MIGS) at the Metal–Semiconductor	
			ice	385
	8.3		l Induced Gap States (VIGS) at the Semiconductor	
			pinterface	
	8.4	Structi	ure- and Chemistry-Dependent Models of Interface States	
	8.5		Applications of Metal-Semiconductor Junctions	
			emiconductor Heterostructures	406
		8.5.1	Schottky Barriers	
		8.5.2	Semiconductor Heterojunctions and Modulation Doping	
		8.5.3		

xiv Contents

	8.6	Quant	um Effects in 2D Electron Gases	
		at Sen	niconductor Interfaces	. 417
	Panel	XIII:	Electrical Measurements of Schottky-Barrier Heights	
			and Band Offsets	425
	Probl	ems		432
9	Colle	octivo I	Phenomena at Interfaces: Superconductivity	
•			nagnetism	435
	9.1		conductivity at Interfaces	
	7.1	9.1.1	Some General Remarks	
		9.1.2	Fundamentals of Superconductivity	
		9.1.3	Andreev Reflection	
		9.1.4	A Simple Model for Transport Through a Normal	442
		J.1T	Conductor–Superconductor Interface	448
	9.2	Iosent	ason Junctions with Ballistic Transport	
	7.2	9.2.1	Josephson Effects	
		9.2.2	Josephson Currents and Andreev Levels	
		9.2.3	Subharmonic Gap Structures	
	9.3		aperimental Example of a Superconductor–Semiconductor	102
	7.5		S-Superconductor Josephson Junction	464
		9.3.1	Preparation of the Nb–2DEG–Nb Junction	
		9.3.2	Critical Currents Through the Nb-2DEG-Nb Junction	
		9.3.3	The Current Carrying Regime	
		9.3.4	Supercurrent Control by Non-equilibrium Carriers	
	9.4		nagnetism at Surfaces and within Thin Films	
		9.4.1	The Band Model of Ferromagnetism	
		9.4.2	Ferromagnetism in Reduced Dimensions	
	9.5		etic Quantum Well States	
	9.6		etic Interlayer Coupling	
	9.7		Magnetoresistance and Spin-Transfer Torque Mechanism	
		9.7.1	Giant Magnetoresistance (GMR)	
		9.7.2	Magnetic Anisotropies and Magnetic Domains	
		9.7.3	Spin-Transfer Torque Effect: A Magnetic	
			Switching Device	496
	Panel	XIV:	Magneto-optical Characterization: Kerr Effect	
	Panel	XV:	Spin-Polarized Scanning Tunneling Microscopy	
			(SP-STM)	508
	Probl	ems	***************************************	
10	A .1	42	on Call I Court	 . —
10			on Solid Surfaces	
	10.1	Char	sorption	517
	10.2	Chemi	isorption	520
			Function Changes Induced by Adsorbates	
	10.4	Two-L	Dimensional Phase Transitions in Adsorbate Layers	. 531

Contents xv

10.5 Adsorp	otion Kinetics
Panel XVI:	Desorption Techniques
Panel XVII:	Kelvin-Probe and Photoemission Measurements
	for the Study of Work-Function Changes
	and Semiconductor Interfaces
Problems	559
References	561
Index	573