Contents

1	Introduction	1
2	Some Preliminaries 2.1 Some Preliminaries in Complex Analysis 2.2 The Notion of Capacity. 2.3 Local Inverse and Analytic Continuation 2.4 Uniformly Separated Sequence 2.5 Some Results in von Neumann Algebras 2.6 Some Results in Operator Theory.	7 7 26 31 33 40 46
3	Cowen-Thomson's Theorem 3.1 Cowen-Thomson's Theorem on Commutants 3.2 Facts from Real and Complex Analysis 3.3 Proof of Cowen-Thomson's Theorem 3.4 A Proposition on Singularities 3.5 An Example not Satisfying Thomson's Condition 3.6 Remarks on Chap. 3	53 58 58 64 76 78 84
4	Reducing Subspaces Associated with Finite Blaschke Products4.1The Distinguished Reducing Subspace4.2Abelian $\mathcal{V}^*(B)$ 4.3Representation for Operators in $\mathcal{V}^*(B)$ 4.4Further Consideration on Reducing Subspaces4.5Proof of Proposition 4.4.64.6Abelian $\mathcal{V}^*(B)$ for Order $B = 5, 6$ 4.7Remarks on Chap. 4	87 95 100 105 111 118 122
5	Reducing Subspaces Associated with Thin Blaschke Products 5.1 Properties of Thin Blaschke Products 5.2 Representation for Operators in $\mathcal{V}^*(B)$ 5.3 Geometric Characterization for $\mathcal{V}^*(B)$ 5.4 Most M_B Are Irreducible 5.5 The Construction of an Example	125 125 129 141 150 162

viii Contents

	5.6	Another Proof for a Characterization on $V^*(B)$	170	
	5.7	Abelian $\mathcal{V}^*(B)$ for Thin Blaschke Products	177	
	5.8	Finite Blaschke Product Revisited	184	
	5.9	Remarks on Chap. 5	192	
6	Cove	ring Maps and von Neumann Algebras	193	
	6.1	Regular Branched Covering Maps and Orbifold Domains	193	
	6.2	Representations of Operators in $\mathcal{V}^*(\phi)$	196	
	6.3	Abelian $\mathcal{V}^*(\phi)$	207	
	6.4	Type II Factors Arising from Planar Domains	213	
	6.5	$\mathcal{V}^*(\phi)$ and Free Group Factors	218	
	6.6	Type II Factors and Orbifold Domains	226	
	6.7	Applications to Multi-variable Case	230	
	6.8	Representation of Operators in $V_{\alpha}^{*}(\phi)$	238	
	6.9	The Structure of $\mathcal{V}_{\alpha}^{*}(\phi)$	242	
	6.10	Group-Like von Neumann Algebras	245	
	6.11	Weighted Bergman Spaces over the Upper Half Plane	250	
	6.12	Remarks on Chap. 6	251	
		•		
7	Simil	arity and Unitary Equivalence	253	
	7.1	The Case of the Hardy Space	253	
	7.2	Unitary Equivalence on Analytic Multiplication Operators	258	
	7.3	Similarity of Analytic Toeplitz Operators	260	
	7.4	Remarks on Chap. 7	268	
8	Algel	oraic Structure and Reducing Subspaces	269	
	8.1	Algebraic Structure of Essentially Normal Operators	269	
	8.2	Algebraic Structure and Reducing Subspaces	281	
	8.3	Monomial Case	283	
	8.4	More Examples in Multi-variable Case	291	
	8.5	Remarks on Chap. 8	299	
A	Berez	zin Transform	301	
В	Nord	gren's Results on Reducing Subspaces	305	
C	* * .	CD 11	200	
C	List	of Problems	309	
Bibliography				
Index				