

Contents

From the Author's Desk XIII

1	Symmetry/Pseudosymmetry: Chirality in Molecules, in Nature, and in the Cosmos 1
1.1	Introduction 1
1.2	Rudimentary Group Theory, Isometry, and Symmetry 4
1.3	Asymmetric versus Chiral: The <i>I</i> -Symmetry of Viral Capsids 7
1.4	The Birth of Chirality as a Chemical Concept 9
1.5	Apparent Symmetry (High-Fidelity <i>Pseudosymmetry</i>) and the Quantification of Distortion from the Ideal 11
1.6	Chirality in Form and Architecture: Symmetry versus Broken Symmetry 16
1.7	Chirality in Nature: Tropical Storms, Gastropods (Shells), and Fish 17
1.8	Extraterrestrial Macroscale Chirality: Spiral Galaxies, Martian Sand Devils, Jovian Great Red Spot, Neptune's Great Dark Spot, and Venusian South-Pole Cloud Vortex 20
1.9	Analyses of Amino Acid Chirality in Extraterrestrial Samples with Gas–Liquid Chromatography Chiral Columns 23
2	Enantiospecificity of Pheromones, Sweeteners, Fragrances, and Drugs 25
2.1	Enantiospecificity of Pheromones, Sweeteners, and Fragrances 25
2.2	The Importance of Chirality in Drug Therapy 27
3	Bonding Parameters and the Effect of Local Environment on Molecular Structure 33
3.1	Symmetry Arguments and the Effect of the Environment on Molecular Structure 33

3.2	The Effect of Local Environment on Molecular Models and Molecular Structure	34
3.3	Torsion Angles and Molecular Conformation	35
3.4	Symmetry Considerations of Atomic Orbital Hybridization and Bonding Parameters	39
4	Historical Development of Structural Chemistry: From Alchemy to Modern Structural Theory	41
4.1	Hemihedrism in Quartz Crystals: Setting the Stage for the Birth of Stereochemistry	41
4.2	Tartaric Acid and Alchemy	45
4.3	Hemihedrism in Crystalline Tartaric Acid Salts: The Birth of Molecular Chirality	46
4.4	Gift for Prelog's Retirement: A Matched Pair of α' -Hemihedral Faced Right- and Left-Handed Quartz Crystals	54
4.5	Early Structural Representations of Organic Substances and the Development of Modern Structural Concepts	55
4.6	Fischer Projections to Determine α - and β -Anomeric Configurations	64
5	Chiroptical Properties	67
5.1	The Language of Symmetry, Isomerism, and the Characterization of Symmetry Relationships within and between Molecules	67
5.2	Chiroptical Properties: Circular Birefringence, Optical Rotatory Dispersion, and Circular Dichroism	68
5.3	Miller Indices and Fractional Coordinates in Crystallography	74
5.4	Scanning Tunneling Microscopy	78
5.5	Direct Visualization of an Enantiomer's Absolute Configuration in the Gas Phase	82
6	Symmetry Comparison of Molecular Subunits: Symmetry in Nuclear Magnetic Resonance Spectroscopy and in Dynamic NMR	85
6.1	Symmetry in NMR Spectroscopy	85
6.2	Symmetry Comparison of Molecular Subunits, Topicity Relationships	87
6.3	Dynamic Stereochemistry, Dynamic Nuclear Magnetic Resonance Spectroscopy (DNMR)	90
6.4	Use of Permutations in DNMR for Topomerization-, Enantiomerization-, and Diastereomerization-Exchange Processes	92

7	Prochirality, Asymmetric Hydrogenation Reactions, and the Curtin–Hammett Principle 99
7.1	Prochirality of Enantiotopic Subunits 99
7.2	Homogeneous Hydrogenation by Rhodium ^I /Achiral Diphosphine Catalysts Differentiates the Diastereotopic Prochiral Faces of Olefins 101
7.3	Homogeneous Hydrogenation by Rhodium ^I /(Chiral Diphosphine) Catalysts Differentiates the Enantiotopic Prochiral Faces of Olefins: The Curtin–Hammett Principle 104
8	Stereogenic Elements, Chirotopicity, Permutational Isomers, and Gear-Like Correlated Motion of Molecular Subunits 113
8.1	Stereogenicity, Stereogenic Elements, Chirotopicity, and the Ambiguity of Some Stereochemical Terms 113
8.2	Triarylamine Propellers 115
8.3	Dynamic Stereochemistry of Permutational Isomers: Correlated Motion in Triarylamin es 116
8.4	Relative Stereochemical Descriptors: <i>Retro-Inverso</i> Isomers 122
9	Symmetry in Extended Periodic Arrays of Molecular Crystals and the Relevance of Penrose Tiling Rules for Nonperiodic Quasicrystal Packing 127
9.1	Symmetry in Extended Arrays/Molecular Crystals 127
9.2	Achiral Periodic Arrays of Chiral Objects and Racemic Compound Crystal Lattices 132
9.3	Chiral Periodic Arrays 132
9.4	Occupancy of Special Positions in Periodic Arrays 136
9.5	The Bragg Law and X-Ray Diffraction 139
9.6	The Interferogram Phenomenon in Single-Crystal X-Ray Crystallography 140
9.7	X-Ray Fiber Diffraction 143
9.8	Penrose Tiling Matching Rules, Quasicrystal Packing, and Dodecahedrane 145
10	Multiple Molecules in the Asymmetric Unit, "Faking It"; Pseudosymmetry Emulation of Achiral Higher Order Space Filling in Kryptoracemate Chiral Crystals 149
10.1	Multiple Molecules within an Asymmetric Unit 149
10.2	"Faking It": <i>Pseudosymmetry Emulation of Achiral Higher-Order Space Filling in Kryptoracemate Chiral Crystals</i> 151
10.3	Desymmetrization of Platonic-Solid Geometries Resulting from Crystallographic Symmetry Constraints 161

10.4	Mobility of Cubane and Dodecahedrane (CH)_n Spherical Molecules within a Crystal Lattice	164
11	Platonic-Solid Geometry Molecules and Crystallographic Constraints upon Molecular Geometry, Symmetry Distortions from Ideality	169
11.1	Geometrical Considerations in High-Symmetry Molecules	169
11.2	Syntheses Strategies of High-Symmetry Chiral Molecules	171
11.3	Ethano-Bridge Enantiomerization of <i>T</i> -Symmetry Molecules	173
11.4	Self-Assembly of <i>T</i> -Symmetry Chiral Molecules	176
11.5	Enantiomerization of <i>T</i> -Symmetry Clusters	180
11.6	Tetradeятate Edge-Linker Units Separated by a Spacer	183
11.7	Self-Assembly of <i>O</i> -Symmetry Chiral Molecules	184
11.8	<i>O</i> -Symmetry Ferritin Protein Octahedral Shell	185
11.9	Desymmetrization Resulting from Symmetry and Chemical Constraints	186
12	Solid-State NMR Spectroscopic/X-Ray Crystallographic Investigation of Conformational Polymorphism/Pseudopolymorphism in Crystalline Stable and Labile Hydrated Drugs	189
12.1	Divalent Anions Linking Conformationally Different Ammonium Cations	189
12.2	Cross Polarization/Magic Angle Spinning Solid-State NMR and X-Ray Crystallographic Studies on the Elusive “Trihydrate” Form of Scopolamine-Hydrobromide, an Anticholinergic Drug	191
13	NMR Spectroscopic Differentiation of Diastereomeric Isomers Having Special Positions of Molecular Symmetry	205
13.1	NMR Anisochronism of Nuclei at Special Positions of Molecular Symmetry	205
13.2	Pattern Recognition: A Graphical Approach to Deciphering Multiplet Patterns	207
14	Stereochemistry of Medium Ring Conformations	213
14.1	A Short Primer on Medium Ring Stereochemistry	213
14.2	Assignment of Equatorial-/Axial-Substituent Descriptors to Rings of Any Size	214
14.3	NMR Structure Determination of Medium-Ring Solution-State Conformations	216
14.4	Dynamic Disorder in Crystals	221

15	The Pharmacophore Method for Computer Assisted Drug Design	229
15.1	The Pharmacophore, Neurotransmitters and Synapse	229
15.2	The Pharmacophore Method for Computer Assisted Drug Design	231
15.3	Determination of the Dopamine Reuptake Site Pharmacophore	233
15.4	Methylphenidate (Ritalin·HCl) and (–)-Cocaine·HCl	235
15.5	Ritalin Versus Cocaine: Binding Affinity and Inhibitory Concentration	238
15.6	Second Generation Pharmacophore: The Orientation of the NH Proton	242
15.7	Avoidance of Adjacent Gauche ⁺ Gauche [–] Interactions	244
15.8	Static Disorder in <i>N</i> -Methyl Ritalin Crystals	246
15.9	Development of Specific Dopamine Reuptake Inhibitors (SDRI)	250
16	The X-Ray Structure–Based Method of Rational Design	255
16.1	X-Ray Crystallographic Structure–Based Molecular Design	255
16.2	The Different Primary Ammonium and Quaternary Aminium Binding Modes	258
16.3	Search for Unused Binding Sites	263
16.4	Primary Ammonium and Quaternary Aminium Binding Modes in CB[7 and 8] Complexes of Diamantane-4,9-Substituted Guests	265
17	Helical Stereochemistry	269
17.1	Helical Stereochemistry	269
17.2	$2n_n$ -Symmetry Achiral Helical Pathways	273
17.3	<i>“La Coupe du Roi”</i> : Chiral Apple Halves Produced by a 4 ₂ -Bisection	278
17.4	Intermeshing Molecular Threefold Helices: Symmetry, Chemical, and Phase Considerations	281
17.5	X-Ray Fiber versus Single-Crystal Diffraction Models	289
References		293
Index		301