Contents

introducti	lon	v
Alexander	Mehler, Andy Lücking, Sven Banisch, Philippe Blanchard,	
Barbara F	rank-Job	
1	On the Content of This Book	V
2	Overview of the Book	VII
	2.1 Part I: Cognition	VII
	2.2 Part II: Topology	VII
	2.3 Part III: Syntax	VIII
	2.4 Part IV: Dynamics	VIII
	2.5 Part V: Resources	IX
Part I: C	ognition	
	Networks as Models of Cognition: Understanding	
0	through Language	3
Nicole M.	Beckage, Eliana Colunga	
1	Introduction	3
2	Language as a Network	5
	2.1 Semantic Networks	5
	2.2 Phonological Networks	6
3	Global Level Network Structure	7
	3.1 Small-World Structure	8
	3.2 Scale-Free Networks	10
4	Human Performance in Relation to Network Structure	11
	4.1 Spreading Activation	11
	4.2 Frequency Effects	15
5	Network Models within Linguistic Networks	16
	5.1 Acquisition	17
	5.2 Network Navigation	21
6	Understanding Atypical Processes	23
7	The Future of Language Networks	25
Refer	rences	26

XIV Contents

Path-Len	gth and	the Misperception of Speech: Insights from Network	
Science a	nd Psych	nolinguistics	29
Michael S	. Vitevitc	h, Rutherford Goldstein, Elizabeth Johnson	
1	Introdu	action	29
2	Netwo	rk Analysis: What Can Be Perceived When Speech Is	
		rceived?	31
3		olinguistic Experiment: What Is Perceived When	
		Is Misperceived?	34
	3.1	Method	35
	3.2	Results	37
4		Ision	4(
			43
.			
		ganization of the Mental Lexicon: A Network	
		d from Syntactic Dependency Relations and Word	4.
			4
_	•	Steven Verheyen, Gert Storms	4.0
l		uction	47
	1.1	Macro-, Meso-, and Microscopic Properties of the	
		Mental Lexicon	48
	1.2	Acquiring a Mental Lexicon through Language	50
	1.3	Chapter Outline	51
2	Constr	ructing the Networks	53
	2.1	Mental Networks	53
	2.2	Language Networks	54
3	Explor	ring the Structure of Language and Mental Networks	56
	3.1	Macroscopic Structure	56
	3.2	Mesoscopic Structure	59
	3.3	Semantic Relatedness Evaluation	66
4	Discus	ssion	70
	4.1	Relationship between Language and Word	
		Associations	72
	4.2	Final Words	73
Refe			74
Part II:	Topology	Y	
Notwork	Motife A	Are a Powerful Tool for Semantic Distinction	83
		uchezar Krumov, Stefanie Roos, Karsten Weihe	0.
1		uction	84
2		d Work	80
3		ase Studies	8
5	3.1	Co-occurrence Graphs from Natural Vs. Artificial	O
	٥.1	-	8′
	2.2	Language	0
	3.2	Co-occurrence Graphs from Verbs Vs. Other Word	0
		Classes	9.

Contents XV

	3.3	Peer-to-Peer Streaming Networks	99	
	3.4	Co-Authorship Networks from Two Subdisciplines		
		of Physics	100	
	3.5	Mailing Networks	102	
4	Concl	lusions and Outlook	103	
Refe	rences.		103	
Multidim	onciona	al Analysis of Linguistic Networks	107	
		en Banisch	107	
1		luction	107	
2		Linguistic Networks Are Special		
_	2.1	Three Types of Networks	109	
	2.2	Network Induction	112	
3		Levels of Statistical Analysis	114	
J	3.1	A Brief Note on Signal Processing on Graphs	115	
	3.2	The Statistical Levels	115	
	3.3	Stylized Facts in Network Analysis	116	
	3.4	Levels in the Statistical Analysis of Networks	118	
4		e Intelligibility of Statistical Indicators in Linguistic	110	
7		orks	120	
	4.1	Path-Based Measures	120	
	4.2	Links and Flows, Structure and Function	121	
	4.3	Types of Network Flow	122	
	4.4	Flow in Linguistic Networks	122	
5		ples	124	
6		ission	124	
7		luding Remarks	126	
•		<u> </u>	120	
Kele	rences.		121	
Semantic	Space	as a Metapopulation System: Modelling the		
Wikipedi	a Infort	mation Flow Network	133	
A. Paolo I	Masucci,	, Alkiviadis Kalampokis, Víctor M. Eguíluz,		
Emilio He				
1	Introd	luction	133	
2	The D	Dataset	136	
3	Topol	logy of the Semantic Space	136	
4	Mode	elling the Semantic Space	141	
5	Discu	ssion	143	
App	endix		145	
Refe	rences.		148	
Aro Wa-	d Adias	panay Natworks Natworks?	153	
Katharina		ency Networks Networks?	133	
Kainarina 1		luction	153	
1		Perspectives of Network Analysis	153	

XVI Contents

2	Definitions	156
	2.1 Definition of Word-Adjacency Networks	156
3	Walk-Based Methods and Network Flows	157
	3.1 Models of Walks	159
4	Word-Adjacency Networks in the Literature	160
5	Summary	162
Rei	ferences	163
Part III	: Syntax	
-	ic Complex Networks and Their Applications	167
	Čech, Ján Mačutek, Haitao Liu	167
1	Introduction	167
2	Basic Characteristics of Syntactic Networks	168
3	Early Development of Syntactic Complex Network Analysis	169
4	Role of Syntax in Syntactic Dependency Complex Networks	172
5	Preprocessing of Data for a Syntactic Complex Network	
	Analysis – Pitfalls to be Avoided	177
6	Applications of Syntactic Complex Networks to Language	0
	Typology and Acquisition	179
	6.1 Language Typology	180
	6.2 Language Acquisition	181
7	Conclusion	182
Re	ferences	183
	on Nodes in Chinese Syntactic Networks	187
	Chen, Haitao Liu	
1	Introduction	187
2	The Chinese Dependency Networks for This Study	189
3	Chinese Function Words	192
4	Chinese Function Words in the Language Networks	193
	4.1 Network Properties of Chinese Function Words	193
	4.2 Network Manipulation	196
5	Conclusion	198
Re	ferences	199
Non-cr	ossing Dependencies: Least Effort, Not Grammar	203
Ramon	Ferrer-i-Cancho	
1	Introduction	203
2	The Syntactic Dependency Structure of Sentences	207
3	The Null Hypothesis	208
4	Alternative Hypotheses	212
	4.1 A Principle of Minimization of Dependency	
	Crossings	213
	4.2 A Principle of Minimization of Dependency Lengths	214

Contents XVII

	4.3	The Relationship between Minimization of Crossings	
		and Minimization of Dependency Lengths 2	16
5	A Stro	onger Null Hypothesis	19
	5.1	The Probability That Two Edges Cross	20
	5.2	The Expected Number of Edge Crossings	21
6	Anoth	ner Stronger Null Hypothesis	24
7			24
8		•	27
Ap	pendix		29
Rei	ferences	2	31
Part IV	: Dynami	ics	
Simulat	ing the E	ffects of Cross-Generational Cultural Transmission	
			37
	ig, Lan Sh		
1	_		37
2	Modif	fied Acquisition Framework 2	40
3	Simul	ation Results	42
4			44
Ap	pendix		48
-	-		54
		and Beyond in Language Change 2	57
	I. Baxter		
1			57
2			58
3			60
4			64
5		• • • • • • • • • • • • • • • • • • • •	67
6	Weigh		68
	6.1	3 3 1	69
	6.2	Asymmetry Depends on Speakers Degree	272
7			274
Ap	pendix	2	75
Re	ferences .		27€
		1	279
Suman I		aity, Animesh Mukherjee	
1			279
2			282
3	The M		283
4	Result	ts and Discussion	283
	4.1	The Mean-Field Case	283
	4.2	Scale-Free Networks	287

XVIII Contents

5	Time-	Varying Networks	290
	5.1	Dataset Description	291
	5.2	The Model Adaptation in the Time-Varying Setting	291
	5.3	Results and Discussion	292
6	Concl	usions and Future Works	294
Ref	ferences		294
Part V:	Resource	es	
Conside	erations fo	or a Linguistic Network Markup Language	299
Maik Sti	ührenberg,	, Nils Diewald, Rüdiger Gleim	
1	Introd	luction	299
2	Data F	Formats	299
	2.1	Data Models	300
	2.2	Data Structures	301
	2.3	Data Serialization	302
3	Existin	ng Formats	304
	3.1	GML	305
	3.2	XGMML	306
	3.3	GraphXML	307
	3.4	GraphML	309
	3.5	GXL	311
	3.6	GrAF	313
	3.7	Summary	315
4	Netwo	ork Tools	315
5	Propo	sal for a Linguistic Network Markup Language	318
	5.1	Extending GraphML by Redefinition	320
	5.2	Extending GraphML by XML Namespaces	322
	5.3	Example Instance	325
6	Concl	usion	327
Re	ferences .		327
Linguis	tic Netwo	orks – An Online Platform for Deriving Collocation	
Networ	ks from N	Vatural Language Texts	331
Alexand	ler Mehler,	; Rüdiger Gleim	
1	Introd	luction	331
2	On the	e Parameter Space of LN	334
3	The S	oftware Architecture of LN	336
4	Summ	nary	340
D -		·	240