Contents

Preface — V

List of contributing authors — XI

lreneo	B. Pangga, Arnold R. Salvacion, and Christian Joseph R. Cumagun
1	Climate change and plant diseases caused by mycotoxigenic fungi:
	implications for food security —— 1
1.1	Introduction —— 1
1.1.1	Mycotoxigenic fungi and food security — 2
1.1.2	Climate change and food security —— 3
1.1.3	Climate change effects on plant diseases and food security —— 4
1.2	Effects of climate change on plant diseases caused by
	mycotoxigenic fungi —— 5
1.2.1	Epidemiology and resistance — 5
1.2.2	Pathogen population genetics and evolution —— 10
1.3	Prediction of climate change effects on epidemics —— 12
1.3.1	Bioclimatic niche models —— 13
1.3.2	Climate change scenario models —— 16
1.4	Management of plant diseases caused by mycotoxigenic fungi
	under climate change —— 19
1.5	Outlook and conclusions —— 20
X. Li ar	nd X. B. Yang
2	Impact of climate change on genetically engineered plants and
	mycotoxigenic fungi in the north central region of the US —— 29
2.1	Introduction —— 29
2.2	GMO cropping systems in US agriculture —— 33
2.2.1	The establishment of GMO cropping systems in the US —— 33
2.2.2	Glyphosate-resistant crops and Bt transgenic techniques —— 34
2.2.3	General impact of GM crops on US agriculture —— 34
2.2.4	Impact of GM crops on mycotoxigenic fungi —— 35
2.3	Global climate change and current situation in the US 36
2.4	Impacts of climate change on the occurrence
	of mycotoxigenic fungi —— 38
2.4.1	The impact of climate change in the off-seasons: winter and
	early spring —— 38
2.4.2	Impact of climate change on planting date and fungi

at seedling stages --- 39

5.1

Introduction —— 91

2.4.3	Impact of climate change on crops and diseases in late spring and summer —— 41
2.4.4	Increased use of fungicides —— 44
2.5	Summary and future risks —— 44
losé-M	iguel Barea
3	Interactions among plants, arbuscular mycorrhizal and mycotoxigenic
	fungi related to food crop health in a scenario of climate change — 53
3.1	Introduction —— 53
3.2	Arbuscular mycorrhizal (AM) symbiosis — 55
3.2.1	AM establishment, function, and management —— 55
3.2.2	AM and stress alleviation in plants — 57
3.2.3	Effects of agricultural practices on AM symbiosis —— 58
3.3	Interactions among plants, AM symbiosis, and mycotoxigenic fungi related to plant health —— 59
3.3.1	The effect of AM on plant protection against pathogens and pests —— 59
3.3.2	Mycorrhiza-induced resistance and priming of plant defenses —— 60
3.3.3	Interactions between AM symbiosis and mycotoxigenic fungi — 62
3.3.4	Impact of climate change on AM fungi and repercussions for the
	protection of food crops against fungal diseases —— 63
3.3.5	Research perspectives and opportunities for exploiting the interactions
	between mycotoxigenic and AM fungi with regard to plant health as
	affected by climate change —— 64
Angel	Medina, Alicia Rodriguez, and Naresh Magan
4	Changes in environmental factors driven by climate change: effects on the
	ecophysiology of mycotoxigenic fungi —— 71
4.1	Background —— 71
4.1.1	Environmental change, fungal adaptation, and mycotoxins — 71
4.1.2	Climate change and mycotoxigenic fungi —— 72
4.2	Ecophysiological modifications on mycotoxigenic fungi under climate
	change conditions —— 75
4.2.1	Two-way $a_w \times$ temperature interactions —— 75
4.2.2	Three-way $a_w \times \text{temperature} \times \text{CO}_2$ interactions — 79
4.3	Climate change impact on mycotoxin gene cluster expression and its
	relationship to growth and toxin production. —— 82
4.4	Conclusions —— 85
Antoni	o Moretti and Antonio F. Logrieco
5	Climate change effects on the biodiversity of mycotoxigenic fungi and their
	mycotoxins in preharvest conditions in Europe —— 91

5.2	Climate change and the risk of aflatoxin and <i>Aspergillus</i> contamination in Europe —— 93
5.3	Fusarium head blight (FHB) of cereals: impact of climate change on the
	risk of trichothecenes and <i>Fusarium</i> contamination in Europe —— 96
5.3. 1	Organization of <i>TRI</i> loci and trichothecene structural variation —— 97
5.3.2	FHB of minor cereals —— 98
5.3.3	Impact of climate change on the Fusarium species profile associated
J.J.J	with FHB — 101
Leif Su	ndheim and Trond Rafoss
6	Fumonisin in maize in relation to climate change —— 109
6.1	Introduction —— 109
6.2	Fumonisin-producing fungi —— 110
6.2.1	Biology of fungi producing fumonisin —— 111
6.3	Fumonisin accumulation in developing maize kernels —— 113
6.3.1	Fumonisins are not required for pathogenicity —— 113
6.3.2	Insect damage increases risk of fumonisin contamination —— 114
6.3.3	Small grain cereals contaminated with fumonisins —— 115
6.3.4	Other crops and commodities contaminated with fumonisins —— 115
6.4	Geographical distribution of fumonisins in maize —— 116
6.4.1	Africa —— 117
6.4.2	Europe —— 118
6.4.3	South America —— 119
6.4.4	North America —— 119
6.4.5	Asia 120
6.5	Climate change predicted by IPCC —— 121
6.5.1	Climate effects on fungi producing fumonisin in maize —— 121
6.5.2	Effects of temperature —— 122
6.5.3	Effects of drought —— 122
6.5.4	Effects of elevated CO ₂ level —— 124
6.6	Conclusions on the effect of climate change on fumonisin —— 124
Maria	Paula Kovalsky Paris, Yin-Jung Liu, Karin Nahrer, and Eva Maria Binder
7	Climate change impacts on mycotoxin production —— 133
7.1	Introduction —— 133
7.2	Impact of temperature, water availability, and CO_2 on mycotoxin
	production —— 134
7.3	Prediction strategies —— 135
7.4	Other factors to consider —— 136
7.5	Insights into potential mycotoxin production: focus on Europe —— 137
7.6	Trends in mycotoxin occurrence —— 138
7.7	Conclusion —— 149

8	Considerations about international mycotoxin legislation, food security
	and climate change —— 153

8.1	Introduction —— 153
8.1.1	Main mycotoxins —— 154
8.2	Impacts of climate change on agriculture —— 155
8.3	Detection methods —— 157
8.3.1	Sampling procedures —— 157
8.3.2	Extraction procedures —— 157
8.3.3	Mycotoxin analysis —— 159
8.3.4	Requirements for mycotoxin analysis methods — 161
8.4	International mycotoxin regulations — 162
R 5	Mycotoxin legislation and climate change — 173

Index —— 181