Contents

A	ckno	wieage	ments		V
	Abbreviations				xv
	Syn	nbols		x	vii
1	Objective and motivation				1
	1.1	Mecha	tronic system		1
	1.2	Develo	opment methods of mechatronic systems		2
		1.2.1	Development methods		3
		1.2.2	Modeling and simulation		4
	1.3	Electr	ical power window regulator		5
	1.4	Objec	tives and structure of the thesis	-	5
2	Sta	te of tl	he art		9
	2.1 State of the art – window regulator systems			9	
		2.1.1	Rail guided cable driven window regulators		9
		2.1.2	Crossarm window regulators		10
		2.1.3	Track guided window regulators		11
					vi

		2.1.4	Comparison of window regulators	11
	2.2	State of tor sys	of the art – simulation methods of window regula- stems	12
		2.2.1	State of the art	12
		2.2.2	Requirements to simulations of window regulator systems	15
	2.3	System	approach	16
		2.3.1	System simulation	16
		2.3.2	Modeling language and simulation engine	17
	2.4	•	n decomposition and steps in using modeling and tion	19
		2.4.1	System decomposition	19
		2.4.2	Steps in using modeling & simulation	20
3		deling	Steps in using modeling & simulation of electrical window regulator system - Anaestigation	20 23
3		deling cal inv	of electrical window regulator system - Ana-	
3	lytic	deling cal inv	of electrical window regulator system - Anaestigation ing and simulation of the behavior of analytical	23
3	lytic	deling cal inve Model model	of electrical window regulator system - Anaestigation ing and simulation of the behavior of analytical	23
3	lytic	deling cal invo Model model 3.1.1 3.1.2	of electrical window regulator system - Anaestigation ing and simulation of the behavior of analytical Analytical model Theoretical investigations - Method of averaging . eter identification - Equivalent mass of motor ar-	23 23
3	3.1 3.2 Med	deling cal inventor Model model 3.1.1 3.1.2 Param matur chatroi	of electrical window regulator system - Anaestigation ing and simulation of the behavior of analytical Analytical model Theoretical investigations - Method of averaging . eter identification - Equivalent mass of motor ar-	23 23 25 33
	3.1 3.2 Med	Model model 3.1.1 3.1.2 Param matur chatron	of electrical window regulator system - Anaestigation ing and simulation of the behavior of analytical	23 23 25 33

		4.1.2	Worm gear	55	
		4.1.3	Rubber damper	82	
		4.1.4	Drive	85	
	4.2	Rail g	uided cable driving window regulator Mechanism .	97	
		4.2.1	Components	97	
		4.2.2	Mechanism	116	
	4.3		ional components for window regulator system in ng environment		
		4.3.1	Mechanical system of car door	127	
		4.3.2	Drive speed measurement system	134	
		4.3.3	Electronic system and electrical switch	138	
		4.3.4	Anti-pinch force measurement system	141	
_	T				
5		_	n of components in window regulator system cations of simulations	143	
	5.1	Model	s of generic rail guided cable		
		windo	w regulator system	143	
	5.2	Simul	ation environment: BroSAnT	147	
		5.2.1	Types of simulations	148	
	5.3	Applie	cations of simulation	151	
		5.3.1	Selection of electrical drive	151	
		5.3.2	Examination of anti-pinch function in early phase	157	
		5.3.3	Investigation of design parameters	159	
6		a wa 6 wa 1	and outlook	163	

Appendices	169

\mathbf{A}	Content and structure of models in modeling language		
	VHDL – Model of DCPM motor as an example	169	
В	Comparison of parameter identification methods for mod of DCPM motor	del 173	

181

Bibliography