

Contents

Abstract	i
Acknowledgements	v
Contents	vii
List of Figures	ix
List of Tables	xi
Abbreviations	xiii
1 Introduction	1
1.1 Motivation	2
1.2 Outline of the thesis.	2
1.3 Non-coding RNA genes	4
1.4 MiRNAs	6
1.4.1 MiRNA genomic makeup and regulation.....	7
1.4.2 MiRNA biogenesis	8
1.4.3 MiRNA target regulation.....	10
1.4.4 MiRNAs in human pathologies	14
2 A comparative analysis of methods in computational miRNA biology	17
2.1 Biomformatics approaches	18
2.1.1 Computational identification of miRNA genes	18
2.1.2 Approaches for the prediction and analysis of miRNA target genes ..	20
2.1.3 Structure prediction and analysis of single and interacting RNA strands.....	23
2.1.4 MiRNA expression analysis and functional characterization.	28
2.1.5 MiRNA web resources	30
2.2 Systems biology approaches.	32
2.2.1 Modelling miRNA target regulation.....	33
2.2.2 MiRNA regulatory network modelling.....	36
2.2.3 Modelling the role of miRNAs in pathogenesis and disease progression ..	41
3 Reconstruction and analysis of networks regulating miRNA target hubs	43
3.2 Motivation for and design of the CATH workflow	44
3.3 Research strategy	47
3.3.1 Data integration	47
3.3.2 Confidence scores for molecular interaction data	49
3.3.3 Network reconstruction and analysis...	52
3.3.4 Derivation of a kinetic model.	54
3.3.5 Experimental validation.....	55
3.4 Case study.....	56
3.4.1 Molecular interaction network displays sophisticated <i>CDKN1A</i> regulation	56
3.4.2 A predictive model of <i>CDKN1A</i> regulation by multiple miRNAs	60
3.4.3 Three modes of combinatorial target regulation.....	62
3.4.4 Wet lab experiments validate model structure	65
3.4.5 Model simulations predict processes-specific <i>CDKN1A</i> expression	66
3.4.6 Prediction of <i>CDKN1A</i> expression for different tissues.....	68
3.4.7 Modulation of miRNA cooperativity influences target repression efficiency	68

3.4.8	MiRNA cooperativity to enhance noise buffering ...	70
3.5	Summary	70
3.5.1	Confidence scores for molecular interactions.....	72
3.5.2	Mathematical models of miRNA-target regulation..	73
3.5.3	Mechanisms of miRNA-target regulation.....	73
3.5.4	Generalization of the CATH workflow	76
4	Prediction and validation of cooperating miRNAs and their mutual targets	79
4.1	Background	80
4.2	Research strategy	83
4.2.1	Predicted and validated miRNA target interactions	83
4.2.2	Secondary structure and minimum free energy prediction	84
4.2.3	Tertiary structure modelling and molecular dynamics simulations.....	85
4.2.4	Prediction of complex equilibrium concentrations	88
4.2.5	A mechanistic model of synergistic target regulation	88
4.2.6	Data sharing	92
4.3	Case study	93
4.3.1	Identification of miRNA target sites	93
4.3.2	Cooperative target regulation may effect most human protein coding genes	94
4.3.3	Triplexes with conserved target sites have lower binding affinities	95
4.3.4	Canonical RNA triplexes form the thermodynamically most stable structures	96
4.3.5	MDS can discriminate thermodynamically unstable triplexes.....	99
4.3.6	Triplex formation depends on equilibrium probability distribution.....	103
4.3.7	Simulations of miRNA cooperativity reveal landscapes of target repression	105
4.3.8	A database of human RNA triplexes	108
4.4	Synthesis of results	109
4.4.1	Ways to narrow down high-confidence RNA triplexes.....	110
4.4.2	What can be learned from 2D and 3D models of RNA triplex structures?.....	112
4.4.3	Time consuming but valuable MDS.....	113
4.4.4	Target regulation efficiency revisited.....	114
4.4.5	Cooperative target regulation - a phenomenon with relevance for cancer?	114
4.4.6	General remarks	115
5	Discussion	117
5.1	Exploration of a new class of ncRNA.....	118
5.2	The necessity of an integrative bioinformatics and systems biology approach	119
5.3	Outlook	121
5.4	Conclusion	122
Appendix		123
References		159
Curriculum vitae		177
Publications		181
Theses		185