

Contents

1.	Introduction — 1
1.1	Two-Dimensional versus Three-Dimensional Structures — 1
1.1.1	Two-Dimensional Structures in Early History of Organic Chemistry — 1
1.1.2	Three-Dimensional Structures After Beginning of Stereochemistry — 2
1.1.3	Arbitrary Switching Between 2D-Based and 3D-Based Concepts — 2
1.2	Problematic Methodology for Categorizing Isomers and Stereoisomers — 4
1.2.1	Same or Different — 5
1.2.2	Dual Definition of Isomers — 6
1.2.3	Positional Isomers as a Kind of Constitutional Isomers — 9
1.3	Problematic Methodology for Categorizing Enantiomers and Diastereomers — 10
1.3.1	Enantiomers — 10
1.3.2	Diastereomers — 11
1.3.3	Chirality and Stereogenicity — 16
1.4	Total Misleading Features of the Traditional Terminology on Isomers — 16
1.4.1	Total Misleading Flowcharts — 17
1.4.2	Another Flowchart With Partial Solutions — 18
1.4.3	More Promising Way — 20
1.5	Isomer Numbers — 20
1.5.1	Combinatorial Enumeration as 2D Structures — 21
1.5.2	Importance of the Proligand-Promolecule Model — 21
1.5.3	Combinatorial Enumeration as 3D Structures — 22
1.6	Stereoisograms — 23
1.6.1	Stereoisograms as Diagrammatic Expressions of <i>RS</i> -Stereoisomeric Groups — 23
1.6.2	Theoretical Foundations and Group Hierarchy — 23
1.6.3	Avoidance of Misleading Standpoints of <i>R/S</i> -Stereodescriptors — 24
1.6.4	Avoidance of Misleading Standpoints of <i>pro-R/pro-S</i> -Descriptors — 25
1.6.5	Global Symmetries and Local Symmetries — 25
1.6.6	Enumeration under <i>RS</i> -Stereoisomeric Groups — 28
1.7	Aims of Mathematical Stereochemistry — 28
	References — 29

2. Classification of Isomers — 35

2.1	Equivalence Relationships of Various Levels of Isomerism — 35
2.1.1	Equivalence Relationships and Equivalence Classes — 35
2.1.2	Enantiomers, Stereoisomers, and Isomers — 36
2.1.3	Inequivalence Relationships — 40
2.1.4	Isoskeletomers as a Missing Link for Consistent Terminology — 42
2.1.5	Constitutionally-Anisomeric Relationships vs. Constitutionally-Isomeric Relationships — 45
2.2	Revised Flowchart for Categorizing Isomers — 46
2.2.1	Design of a Revised Flowchart for Categorizing Isomers — 46
2.2.2	Illustrative Examples — 48
2.2.3	Restriction of the Domain of Isomerism — 49
2.2.4	Harmonization of 3D-Based Concepts with 2D-Based Concepts — 50
	References — 52

3. Point-Group Symmetry — 53

3.1	Stereoskeletons and the Proligand-Promolecule Model — 53
3.1.1	Configuration and Conformation — 53
3.1.2	The Proligand-Promolecule Model — 53
3.2	Point Groups — 56
3.2.1	Symmetry Axes and Symmetry Operations — 56
3.2.2	Construction of Point Groups — 59
3.2.3	Subgroups of a Point Group — 60
3.2.4	Maximum Chiral Subgroup of a Point Group — 62
3.2.5	Global and Local Point-Group Symmetries — 63
3.3	Point-Group Symmetries of Stereoskeletons — 67
3.3.1	Stereoskeletons of Ligancy 4 — 67
3.3.2	Stereoskeletons of Ligancy 6 — 72
3.3.3	Stereoskeletons of Ligancy 8 — 73
3.3.4	Stereoskeletons Having Two or More Orbita — 74
3.4	Point-Group Symmetries of (Pro)molecules — 77
3.4.1	Derivation of Molecules from a Stereoskeleton via Promolecules — 77
3.4.2	Orbits in Molecules and Promolecules Derived from Stereoskeletons — 78
3.4.3	The SCR Notation — 82
3.4.4	Site Symmetries vs. Coset Representations for Symmetry Notations — 83
	References — 85

4. Sphericities of Orbits and Prochirality — 87	
4.1 Sphericities of Orbits — 87	
4.1.1 Orbits of Equivalent Proligands — 87	
4.1.2 Three Kinds of Sphericities — 88	
4.1.3 Chirality Fittingness for Three Modes of Accommodation — 89	
4.2 Prochirality — 92	
4.2.1 Confusion on the Term 'Prochirality' — 92	
4.2.2 Prochirality as a Geometric Concept — 95	
4.2.3 Enantiospheric Orbits vs. Enantiotopic Relationships — 98	
4.2.4 Chirogenic Sites in an Enantiospheric Orbit — 100	
4.2.5 Prochirality Concerning Chiral Proligands in Isolation — 107	
4.2.6 Global Prochirality and Local Prochirality — 109	
References — 113	
5. Foundations of Enumeration Under Point Groups — 115	
5.1 Orbits Governed by Coset Representations — 115	
5.1.1 Coset Representations — 115	
5.1.2 Mark Tables — 118	
5.1.3 Multiplicities of Orbits — 120	
5.2 Subduction of Coset Representations — 122	
5.2.1 Subduced Representations — 123	
5.2.2 Unit Subduced Cycle Indices (USCIs) — 127	
References — 130	
6. Symmetry-itemized Enumeration Under Point Groups — 131	
6.1 Fujita's USCI Approach — 131	
6.1.1 Historical Comments — 131	
6.1.2 USCI-CFs for Itemized Enumeration — 131	
6.1.3 Subduced Cycle Indices for Itemized Enumeration — 138	
6.2 The FPM Method of Fujita's USCI Approach — 140	
6.2.1 Fixed-Point Vectors (FPVs) and Multiplicity Vectors (MVs) — 140	
6.2.2 Fixed-Point Matrices (FPMs) and Isomer-Counting Matrices (ICMs) — 141	
6.2.3 Practices of the FPM Method — 143	
6.3 The PCI Method of Fujita's USCI Approach — 149	
6.3.1 Partial Cycle Indices With Chirality Fittingness (PCI-CFs) — 149	
6.3.2 Partial Cycle Indices Without Chirality Fittingness (PCIs) — 151	
6.3.3 Practices of the PCI Method — 151	
6.4 Other Methods of Fujita's USCI Approach — 164	
6.4.1 The Elementary-Superposition Method — 164	
6.4.2 The Partial-Superposition Method — 165	
6.5 Applications of Fujita's USCI Approach — 165	

6.5.1	Enumeration of Flexible Molecules — 165
6.5.2	Enumeration of Molecules Interesting Stereochemically — 166
6.5.3	Enumeration of Inorganic Complexes — 168
6.5.4	Enumeration of Organic Reactions — 169
References	— 170

7. Gross Enumeration Under Point Groups — 173

7.1	Counting Orbitals — 173
7.2	Pólya's Theorem of Counting — 174
7.3	Fujita's Proligand Method of Counting — 177
7.3.1	Historical Comments — 177
7.3.2	Sphericities of Cycles — 178
7.3.3	Products of Sphericity Indices — 180
7.3.4	Practices of Fujita's Proligand Method — 183
7.3.5	Enumeration of Achiral and Chiral Promolecules — 187
References	— 191

8. Enumeration of Alkanes as 3D Structures — 193

8.1	Surveys With Historical Comments — 193
8.2	Enumeration of Alkyl Ligands as 3D Planted Trees — 195
8.2.1	Enumeration of Methyl Proligands as Planted Promolecules — 195
8.2.2	Recursive Enumeration of Alkyl ligands as Planted Promolecules — 200
8.2.3	Functional Equations for Recursive Enumeration of Alkyl ligands — 202
8.2.4	Achiral Alkyl Ligands and Pairs of Enantiomeric Alkyl Ligands — 207
8.3	Enumeration of Alkyl Ligands as Planted Trees — 208
8.3.1	Alkyl Ligands or Monosubstituted Alkanes as Graphs — 208
8.3.2	3D Structures vs. Graphs for Characterizing Alkyl Ligands or Monosubstituted Alkanes — 210
8.4	Enumeration of Alkanes (3D-Trees) as 3D-Structural Isomers — 212
8.4.1	Alkanes as Centroidal and Bicentroidal 3D-Trees — 212
8.4.2	Enumeration of Centroidal Alkanes (3D-Trees) as 3D-Structural Isomers — 214
8.4.3	Enumeration of Bicentroidal Alkanes (3D-Trees) as 3D-Structural Isomers — 217
8.4.4	Total Enumeration of Alkanes as 3D-Trees — 222
8.5	Enumeration of Alkanes (3D-Trees) as Steric Isomers — 224
8.5.1	Centroidal Alkanes (3D-Trees) as Steric Isomers — 224
8.5.2	Bicentroidal Alkanes (3D-Trees) as Steric Isomers — 224
8.5.3	Total Enumeration of Alkanes (3D-Trees) as Steric Isomers — 226

8.6	Enumeration of Alkanes (Trees) as Graphs or Constitutional Isomers —	226
8.6.1	Alkanes as Centroidal and Bicentroidal Trees —	226
8.6.2	Enumeration of Centroidal Alkanes (Trees) as Constitutional Isomers —	227
8.6.3	Enumeration of Bicentroidal Alkanes (Trees) as Constitutional Isomers —	228
8.6.4	Total Enumeration of Alkanes (Trees) as Graphs or Constitutional Isomers —	231
References —		231

9.	Permutation-Group Symmetry —	233
9.1	Historical Comments —	233
9.2	Permutation Groups —	235
9.2.1	Permutation Groups as Subgroups of Symmetric Groups —	235
9.2.2	Permutations vs. Reflections —	236
9.3	<i>RS</i> -Permutation Groups —	238
9.3.1	<i>RS</i> -Permutations and <i>RS</i> -Diastereomeric Relationships —	238
9.3.2	<i>RS</i> -Permutation Groups vs. Point Groups —	239
9.3.3	Formulation of <i>RS</i> -Permutation Groups —	244
9.3.4	Action of <i>RS</i> -Permutation Groups —	245
9.3.5	Misleading Features of the Conventional Terminology —	248
9.4	<i>RS</i> -Permutation Groups for Skeletons of Ligancy 4 —	252
9.4.1	<i>RS</i> -Permutation Group for a Tetrahedral Skeleton —	252
9.4.2	<i>RS</i> -Permutation Group for an Allene Skeleton —	261
9.4.3	<i>RS</i> -Permutation Group for an Ethylene Skeleton —	265
References —		271

10.	Stereoisograms and <i>RS</i>-Stereoisomers —	273
10.1	Stereoisograms as Integrated Diagrammatic Expressions —	273
10.1.1	Elementary Stereoisograms of Skeletons with Position Numbering —	273
10.1.2	Stereoisograms Based on Elementary Stereoisograms —	280
10.2	Enumeration Under <i>RS</i> -Stereoisomeric Groups —	287
10.2.1	Subgroups of the <i>RS</i> -Stereoisomeric Group $C_{3v\tilde{o}\tilde{l}}$ —	287
10.2.2	Coset Representations —	290
10.2.3	Mark Table and its Inverse —	291
10.2.4	Subduction for <i>RS</i> -Stereoisomeric Groups —	292
10.2.5	USCI-CFs for <i>RS</i> -Stereoisomeric Groups —	294
10.2.6	SCI-CFs for <i>RS</i> -Stereoisomeric Groups —	297
10.2.7	The PCI Method for <i>RS</i> -Stereoisomeric Groups —	297
10.2.8	Type-Itemized Enumeration by the PCI Method —	301

10.2.9	Gross Enumeration Under <i>RS</i> -Stereoisomeric Groups —	303
10.3	Comparison with Enumeration Under Subgroups —	305
10.3.1	Comparison with Enumeration Under Point Groups —	305
10.3.2	Comparison with Enumeration Under <i>RS</i> -Permutation Groups —	307
10.3.3	Comparison with Enumeration Under Maximum-Chiral Point Subgroups —	309
10.4	<i>RS</i> -Stereoisomers as Intermediate Concepts —	311
References — 312		
11.	Stereoisograms for Tetrahedral Derivatives —	313
11.1	<i>RS</i> -Stereoisomeric Group $T_{d\tilde{\sigma}\tilde{l}}$ and Elementary Stereoisogram —	313
11.2	Stereoisograms of Five Types for Tetrahedral Derivatives —	315
11.2.1	Type-I Stereoisograms of Tetrahedral Derivatives —	315
11.2.2	Type-II Stereoisograms of Tetrahedral Derivatives —	317
11.2.3	Type-III Stereoisograms of Tetrahedral Derivatives —	318
11.2.4	Type-IV Stereoisograms of Tetrahedral Derivatives —	319
11.2.5	Type-V Stereoisograms of Tetrahedral Derivatives —	320
11.3	Enumeration Under the <i>RS</i> -Stereoisomeric Group $T_{d\tilde{\sigma}\tilde{l}}$ —	322
11.3.1	Non-Redundant Set of Subgroups and Five Types of Subgroups —	322
11.3.2	Subduction of Coset Representations —	325
11.3.3	The PCI Method for the <i>RS</i> -Stereoisomeric Group $T_{d\tilde{\sigma}\tilde{l}}$ —	327
11.3.4	Type-Itemized Enumeration by the PCI Method —	332
11.4	Comparison with Enumeration Under Subsymmetries —	334
11.4.1	Enumeration of Tetrahedral Promolecules Under the Point-Group Symmetry —	334
11.4.2	Enumeration of Tetrahedral Promolecules Under the <i>RS</i> -Permutation-Group Symmetry —	336
11.4.3	Comparison with Enumeration Under Maximum-Chiral Point Subgroups —	338
11.4.4	Confusion Between the Point-Group Symmetry and the <i>RS</i> -Permutation-Group Symmetry —	339
References — 340		
12.	Stereoisograms for Allene Derivatives —	341
12.1	<i>RS</i> -Stereoisomeric Group $D_{2d\tilde{\sigma}\tilde{l}}$ and Elementary Stereoisogram —	341
12.2	Stereoisograms of Five Types for Allene Derivatives —	343
12.2.1	Type-I Stereoisograms of Allene Derivatives —	343
12.2.2	Type-II Stereoisograms of Allene Derivatives —	345
12.2.3	Type-III Stereoisograms of Allene Derivatives —	347

12.2.4	Type-IV Stereoisograms of Allene Derivatives — 349
12.2.5	Type-V Stereoisograms of Allene Derivatives — 350
12.3	Enumeration Under the <i>RS</i> -Stereoisomeric Group $D_{2d\tilde{\sigma}\tilde{l}}$ — 352
12.3.1	Non-Redundant Set of Subgroups and Five Types of Subgroups — 352
12.3.2	Subduction of Coset Representations — 355
12.3.3	The PCI Method for the <i>RS</i> -Stereoisomeric Group $D_{2d\tilde{\sigma}\tilde{l}}$ — 355
12.3.4	Type-Itemized Enumeration by the PCI Method — 360
12.4	Comparison with Enumeration Under Subsymmetries — 362
12.4.1	Enumeration of Allene Promolecules Under the Point-Group Symmetry — 362
12.4.2	Enumeration of Allene Promolecules Under the <i>RS</i> -Permutation-Group Symmetry — 363
References	— 364
13.	Stereochemical Nomenclature — 365
13.1	Absolute Configuration — 365
13.1.1	Single Pair of Attributes ‘Chirality/Achirality’ in Modern Stereochemistry — 365
13.1.2	Three Pairs of Attributes in Fujita’s Stereoisogram Approach — 366
13.1.3	Three Aspects of Absolute Configuration — 367
13.2	Quadruplets of <i>RS</i> -Stereoisomers as Equivalence Classes — 368
13.2.1	Three Types of Pairwise Relationships in a Quadruplet of <i>RS</i> -Stereoisomers — 368
13.2.2	Formulation of Stereoisograms as Quadruplets of <i>RS</i> -Stereoisomers — 370
13.3	Inner Structures of Promolecules — 370
13.3.1	Inner Structures of <i>RS</i> -Stereogenic Promolecules — 371
13.3.2	Inner Structures of <i>RS</i> -Astereogenic Promolecules — 374
13.4	Assignment of Stereochemical Nomenclature — 376
13.4.1	Single Criterion for Giving <i>RS</i> -Stereodescriptors — 377
13.4.2	<i>RS</i> -Diastereomers: the CIP Priority System — 378
13.4.3	<i>R/S</i> -Stereodescriptors and Stereoisograms — 380
13.4.4	Chirality Faithfulness — 382
13.4.5	Stereochemical Notations for Other Skeletons — 384
References	— 385
14.	Pro-<i>RS</i>-Stereogenicity Based on Orbitals — 387
14.1	Prochirality vs. Pro- <i>RS</i> -Stereogenicity — 387
14.1.1	Prochirality as a Geometric Concept — 387
14.1.2	Pro- <i>RS</i> -Stereogenicity as a Stereoisomeric Concept — 388

14.1.3	Prochirality and Pro- <i>RS</i> -Stereogenicity for Tetrahedral Derivatives — 388
14.2	Orbits under <i>RS</i> -Permutation Groups — 388
14.2.1	<i>RS</i> -Tropicity — 388
14.2.2	Pro- <i>RS</i> -Stereogenicity as a Stereoisomeric Concept — 390
14.3	<i>pro-R/pro-S</i> -Descriptors — 392
14.3.1	<i>RS</i> -Diastereotopic Relationships — 392
14.3.2	Single Criterion for Giving <i>pro-R/pro-S</i> -descriptors — 393
14.3.3	Probe Stereoisograms for Assessing <i>pro-R/pro-S</i> -Descriptors — 394
14.3.4	Misleading Interpretation of 'Prochirality' in Modern Stereochemistry — 396
14.4	Pro- <i>RS</i> -Stereogenicity Distinct From Prochirality — 398
14.4.1	Simultaneity of Prochirality and Pro- <i>RS</i> -Stereogenicity in a Type-IV Promolecule — 398
14.4.2	Coincidence of Prochirality and Pro- <i>RS</i> -stereogenicity — 400
14.4.3	Prochiral (but Already <i>RS</i> -Stereogenic) Promolecules — 402
14.5	Pro- <i>RS</i> -Stereogenicity for <i>pro-R/pro-S</i> -Descriptors — 403
	References — 404
15.	Perspectives — 405
15.1	Enumeration of Highly Symmetric Molecules — 405
15.2	Interaction of Orbitals of Different Kinds — 405
15.3	Correlation Diagrams of Stereoisograms — 406
15.4	Group Hierarchy — 407
15.5	Non-Rigid Molecules and Conformations — 409
15.6	Interdisciplinary Nature of Mathematical Stereochemistry — 409
15.6.1	Mathematical and Stereochemical Barriers In Practical Levels — 410
15.6.2	Mathematical and Stereochemical Barriers In Conceptual Levels — 411
15.7	Reorganizing the Theoretical Foundations of Stereochemistry and Stereoisomerism — 411
	References — 412
	Index — 415