Contents

Pi	P	fa	c	6	 V	11

introduction $$	roduction ——	1
-----------------	--------------	---

1 .	Method of Generalized Eikonal —— 15
1.1	Integral representation of solution —— 15
1.1.1	Statement of the problem —— 15
1.1.2	Construction of "auxiliary" domain and generalized geometrical
	optics function —— 16
1.1.3	Boundary conditions —— 20
1.1.4	Features of the solution —— 23
1.2	Asymptotic calculation of contour integrals by method of stationary
	phase 24
1.2.1	General solution —— 25
1.2.2	Solution of diffraction problem for plane and cylindrical waves by the
	method of generalized eikonal —— 27
2	Solution of Two-dimensional Problems by the Method of Generalized
	Eikonal 35
2.1	Introduction —— 35
2.2	Diffraction by half-plate —— 36
2.2.1	Solution on the given curve r_{d0} — 40
2.2.2	Power normalization —— 42
2.2.3	Solution by method of successive diffractions (MSD) —— 46
2.2.4	Results of calculations —— 48
2.3	Diffraction by a truncated wedge — 56
2.3.1	Schwarz-Christoffel integral 59
2.3.2	Features of solution for half-plate —— 60
2.3.3	Solution by method of successive diffractions —— 62
2.3.4	Principles for the construction of heuristic solutions for diffraction
	by truncated wedge —— 63
2.3.5	Solution with generalized Fresnel integral —— 64
2.3.6	Numerical results — 67
2.3.7	Analysis of solutions —— 67
3	Application of Two-dimensional Solutions to Three-dimensional
	Problems 73
3.1	Integrals over elementary strips —— 73
3.1.1	Statement of the diffraction problem —— 73

3.1.2	Infinite cylinder —— 75
3.1.3	Far zone condition 76
3.1.4	Fragment of cylindrical surface —— 78
3.1.5	Polygonal edge —— 79
3.2	Application of two-dimensional solutions to three-dimensional
	problems —— 81
3.2.1	Physical optics solution for diffraction by a plane scatterer. Propertie
	of contour integral 81
3.2.2	Rigorous 3D formulas —— 82
3.2.3	Comparison with 2D case —— 84
3.2.4	Total current diffraction coefficients —— 84
4	Diffraction by a Plane Perfectly Conducting Angular Sector
	(Heuristic Approach) 85
4.1	Statement of the problem —— 85
4.2	Solution in physical optics approximation —— 87
4.2.1	Contour integral with enforced far zone condition —— 89
4.2.2	Inputs of edges and vertices —— 90
4.3	Solution in EECM approximation —— 96
4.3.1	Rigorous solution for oblique incident wave —— 96
4.3.2	Substitution of polarization components of diffraction coefficients —— 98
4.4	Modified EECM —— 101
4.5	Applicability limits of heuristic approaches —— 106
4.5.1	Solution algorithm —— 106
4.5.2	Applicability limits of heuristic solutions —— 108
4.5.2	Applicability limits of fleuristic solutions —— 106
5	Propagation of Radio Waves in Urban Environment
	(Deterministic Approach) —— 109
5.1	Relevance of the problem —— 109
5.2	Specifics of radio wave propagation in urban environment —— 111
5.3	Design formulas —— 112
5.3.1	Zone significant for radio wave propagation —— 112
5.3.2	Reference solutions —— 114
5.3.3	Mutual coupling between two antennas —— 115
5.3.4	Energy relationships —— 117
5.3.5	Fresnel zone —— 119
5.3.6	Derivation of heuristic formulas —— 121
5.3.7	Solution algorithm —— 121

6	Analytical Heuristic Solution for Wave Diffraction by a Plane Polygonal Scatterer —— 125
6.1	Introduction —— 125
6.2	Problem formulation for elastic wave diffraction —— 126
6.3	Approach to derivation of formulas —— 130
6.4	General form of the solution —— 134
7	Conclusion —— 135
A	Application of Stokes Theorem to Diffraction Problems —— 139
A.1	Stokes theorem. Relationship between the surface and contour integrals —— 139
A.2	Integral over the surface of a finite-size polygon —— 141
A.3	Integral over the surface of a plane angular sector —— 143
A.4	Vertex waves for a finite-size polygon —— 144
A.5	Phase function and far zone condition —— 147
В	Rigorous Two-dimensional Solution for Diffraction by Half-plane —— 149
C	Application of Imaginary Edge in Diffraction Problems —— 157
D	Summary of Formulas for Diffraction by Plane Angular Sector —— 163
E	Fresnel Integral and its Properties —— 169
F	Generalized Fresnel Integral and Its Properties —— 173
G	Electromagnetic Wave Diffraction by Semi-transparent Plate —— 177
Н	Generalized Diffraction Coefficient and its Application to Diffraction Problems —— 181
Bibliog	raphy —— 193

Index ---- 199