Contents

Part I Background Materials

1	Over	view	3
	1.1	Introduction	3
	1.2		3
			3
			4
			4
	1.3		5
			5
			6
			7
	1.4		8
	1.5		8
			9
2	Engi	neering Activities in Product Life Cycle	1
	2.1	· · · · · · · · · · · · · · · · · · ·	1
	2.2		1
		-	1
			2
	2.3		5
			5
		J1	6
		, ,	9
			2

viii Contents

	2.4	Engine	eering Activities in Post-manufacturing Phase	22
		2.4.1	Main Activities in Marketing Stage	22
		2.4.2	Main Activities in Post-sale Support Stage	22
		2.4.3	Recycle, Refurbishing, and Remanufacturing	23
	2.5	Approx	ach for Solving Quality and Reliability Problems	24
	Refe	rences		24
3	Fund	łamenta	l of Reliability	27
	3.1		uction	27
	3.2		pts of Reliability and Failure	27
		3.2.1	Reliability	27
		3.2.2	Failure	28
		3.2.3	Failure Mode and Cause	29
		3.2.4	Failure Mechanism	29
		3.2.5	Failure Severity and Consequences	30
		3.2.6	Modeling Failures	30
	3.3	Reliab	ility Basic Functions	31
		3.3.1	Probability Density Function	31
		3.3.2	Cumulative Distribution and Reliability Functions	32
		3.3.3	Conditional Distribution and Residual Life	33
		3.3.4	Failure Rate and Cumulative Hazard Functions	34
		3.3.5	Relations Between Reliability Basic Functions	35
	3.4	Compo	onent Bathtub Curve and Hockey-Stick Line	36
			haracteristics	37
		3.5.1	Measures of Lifetime	37
		3.5.2	Dispersion of Lifetime	40
		3.5.3	Skewness and Kurtosis of Life Distribution	41
	3.6	Reliab	ility of Repairable Systems	41
		3.6.1	Failure-Repair Process	41
		3.6.2	Reliability Measures	43
		3.6.3	Failure Point Process	44
	3.7	Evolut	ion of Reliability Over Product Life Cycle	46
		3.7.1	Design Reliability	46
		3.7.2	Inherent Reliability	47
		3.7.3	Reliability at Sale	47
		3.7.4	Field Reliability	47
		3.7.5	Values of Weibull Shape Parameter Associated	
			with Different Reliability Notions	48
	Refe	rences	***************************************	48

Contents ix

4	Distr		1
	4.1		1
	4.2		1
		4.2.1 Basic Functions of a Discrete Distribution 5	1
		4.2.2 Single-Parameter Models	2
		4.2.3 Two-Parameter Models	3
		4.2.4 Hypergeometric Distribution	6
	4.3	Simple Continuous Distributions	57
			57
			8
			59
	4.4	Complex Distribution Models Involving Multiple Simple	
			59
		4.4.1 Mixture Model	59
			60
		. •	51
			52
	4.5		54
	Refe		66
5	Stati	stical Methods for Lifetime Data Analysis 6	57
	5.1		57
	5.2		57
			57
		5.2.2 Life Data 6	58
		5.2.3 Performance Degradation Data	72
			72
	5.3	Nonparametric Estimation Methods for Cdf	73
		5.3.1 Complete Data Case	73
		5.3.2 Grouped Data Case	73
			74
	5.4	Parameter Estimation Methods	79
		5.4.1 Graphical Method	79
		5.4.2 Method of Moments	30
		5.4.3 Maximum Likelihood Method	31
		5.4.4 Least Square Method	33
			33
	5.5	•	34
		• • • • • • • • • • • • • • • • • • • •	34
		1	35
	5.6		35
	0		36
			37
	Dofo		27

Contents

5	Relia	ability M	Iodeling of Repairable Systems	89
	6.1	Introdu	action	89
	6.2	Failure	Counting Process Models	90
		6.2.1	Renewal Process	90
		6.2.2	Homogeneous Poisson Process	91
		6.2.3	Nonhomogeneous Poisson Process	91
		6.2.4	Empirical Mean Cumulative Function	92
	6.3		oution Models for Modeling Failure Processes	93
		6.3.1	Ordinary Life Distribution Models	93
		6.3.2	Imperfect Maintenance Models	94
		6.3.3	Variable-Parameter Distribution Models	94
	6.4	A Proc	cedure for Modeling Failure Processes	94
		6.4.1	An Illustration	94
		6.4.2	Modeling Procedure	95
	6.5	Tests f	For Stationarity	96
		6.5.1	Graphical Methods	97
		6.5.2	Tests with HPP Null Hypothesis	97
		6.5.3	Tests with RP Null Hypothesis	100
		6.5.4	Performances of Trend Tests	101
	6.6	Tests f	For Randomness	102
		6.6.1	Runs Above and Below Median Test	102
		6.6.2	Sign Test	104
		6.6.3	Runs Up and Down	104
		6.6.4	Mann-Kendall Test	105
		6.6.5	Spearman Test	105
		6.6.6	Discussion	106
	6.7	Tests f	for Normality and Constant Variance	106
		6.7.1	Tests for Normality	107
		6.7.2	Tests for Constant Variance	108
	Refe	rences		108
Pa	rt II	Product	Quality and Reliability in Pre-manufacturing Phase	
7	Proc	luct Desi	ign and Design for X	113
	7.1	Introdu	action	113
	7.2	Produc	et Design and Relevant Issues	113
		7.2.1	Product Design	113
		7.2.2	Key Issues	114
		7.2.3	Time-Based Product Design	114
		7.2.4	Design for Life Cycle	115
		7.2.5	Design for X	115

Contents xi

	7.3	Design for Several Overall Performances
		7.3.1 Design for Safety
		7.3.2 Design for Environment
		7.3.3 Desígn for Quality
		7.3.4 Design for Reliability
		7.3.5 Design for Testability
	7.4	Design for Production-Related Performances
		7.4.1 Design for Manufacturability 121
		7.4.2 Design for Assembliability
		7.4.3 Design for Logistics
	7.5	Design for Use-Related Performances
		7.5.1 Design for Serviceability
		7.5.2 Design for Maintainability
		7.5.3 Design for Supportability
	7.6	Design for Retirement-Related Performances
		7.6.1 Design for Recyclability
		7.6.2 Design for Disassembliability 126
	Refe	rences
8	Desig	gn Techniques for Quality
	8.1	Introduction
	8.2	House of Quality and Quality Function Deployment 129
		8.2.1 House of Quality
		8.2.2 Priorities of Engineering Characteristics 131
		8.2.3 Satisfaction Degrees of Customer Attributes 132
		8.2.4 Quality Function Deployment
	8.3	Cost of Quality and Loss Function
		8.3.1 Quality Costs
		8.3.2 Loss Function
		8.3.3 Applications of Quality Loss Function 136
	8.4	Experimental Optimum Method
		8.4.1 Basic Idea
		8.4.2 Specific Procedure
		8.4.3 Design of Experiments
		8.4.4 Data Analysis
	8.5	Model-Based Optimum Method
		8.5.1 Constraint Conditions
		8.5.2 Objective Function
	Refe	rences
9	Desi	gn Techniques for Reliability
	9.1	Introduction
	9.2	Process of Design for Reliability
	0.3	Poliphility Paguiraments 149

xii Contents

	9.4	Reliabil	lity Analysis	149
		9.4.1	Change Point Analysis	149
		9.4.2	FMEA	149
		9.4.3	System Reliability Analysis	150
	9.5	Reliabil	lity Prediction	154
		9.5.1	Empirical Methods	154
		9.5.2	Physics of Failure Analysis Method	155
		9.5.3	Life Testing Method	157
		9.5.4	Simulation Method	157
	9.6	Reliabil	lity Allocation	158
		9.6.1	Reliability Allocation Methods for Nonrepairable	
			Systems	158
		9.6.2	Reliability Allocation Methods for Repairable	
			Systems	160
	9.7	Technic	ques to Achieve Desired Reliability	162
		9.7.1	Component Deration and Selection	162
		9.7.2	Redundancy	165
		9.7.3	Preventive Maintenance	165
		9.7.4	Reliability Growth Through Development	166
	9.8	Reliabi	lity Control and Monitoring	166
		9.8.1	Reliability Control in Manufacturing Process	166
		9.8.2	Reliability Monitoring in Usage Phase	167
	Refer	ences		167
10		•	esting and Data Analysis	169
	10.1		ction	169
	10.2		t Reliability Tests in Product Life Cycle	169
		10.2.1	Reliability Tests Carried Out During Product	
			Development Stage	169
		10.2.2	Reliability Tests Carried Out During Product	
			Manufacturing Phase	170
		10.2.3	Reliability Tests Carried Out During Product	
			Usage Phase	171
	10.3		rated Testing and Loading Schemes	171
		10.3.1	Accelerated Life Testing	171
		10.3.2	Accelerated Degradation Testing	172
		10.3.3	Loading Schemes	172
	10.4	Accelei	rated Life Testing Data Analysis Models	174
		10.4.1	Life Distribution Models	174
		10.4.2	Stress-Life Relationship Models	176
		10.4.3	Inverse Power-Law Model	177
		10.4.4	Proportional Hazard Model	177
		10.4.5	Generalized Proportional Model	179
		10.4.6	Discussion	179

Contents xiii

	10.5	Accelerated Degradation Testing Models	
		10.5.1 Physical-Principle-Based Models	
		10.5.2 Data-Driven Models	_
		10.5.3 Discussion	
	10.6	10.5.4 A Case Study	
	10.6	Design of Accelerated Stress Testing	
		10.6.1 Design Variables and Relevant Performances	
	ъ.	10.6.2 Empirical Approach for ALT Design	
	Refer	ences	. 192
11	Relia	bility Growth Process and Data Analysis	
	11.1	Introduction	
	11.2	TAF Process	
	11.3	Reliability Growth Plan Model	
		11.3.1 Reliability Growth Plan Curve	
		11.3.2 Duane Model	
	11.4	Modeling Effectiveness of a Corrective Action	. 197
		11.4.1 Type of Failure Modes	
		11.4.2 Effectiveness of a Corrective Action	. 197
	11.5	Reliability Growth Evaluation Models	. 198
		11.5.1 Software Reliability Growth Models	
		and Parameter Estimation	. 199
		11.5.2 Discrete Reliability Growth Models	
		for Complex Systems	. 202
		11.5.3 Continuous Reliability Growth Models	
		for Complex Systems	. 204
	11.6	Design Validation Test	. 208
	11.7	A Case Study	
		11.7.1 Data and Preliminary Analysis	
		11.7.2 Assessment and Prediction of Failure Intensity	
		of Each Mode	. 209
		11.7.3 Prediction of Unobserved Failure Modes	
		11.7.4 Discussion	. 215
		11.7.5 Reliability Growth Plan Curve	
	Refer	ences	
Par	t III	Product Quality and Reliability in Manufacturing Phase	
12	Prod	uct Quality Variations and Control Strategies	. 221
	12.1	Introduction	
	12.2	Variations of Quality Characteristics and Their Effect	
		on Product Quality and Reliability	. 221

xiv Contents

		12.2.1	Variations of Quality Characteristics	
			and Variation Sources	221
		12.2.2	Effect of Unit-to-Unit Variability on Product	
			Quality and Reliability	223
		12.2.3	Effect of Operating and Environmental Factors	
			on Product Reliability	225
	12.3	Reliabil	lity and Design of Production Systems	226
		12.3.1	Reliability of Production Systems	226
		12.3.2	Design of Production Systems	228
	12.4	Quality	Control and Improvement Strategies	228
		12.4.1	Inspection and Testing	229
		12.4.2	Statistical Process Control	229
		12.4.3	Quality Control by Optimization	230
	12.5	Quality	Management	232
		12.5.1	Principles of Quality Management	232
		12.5.2	Quality Management Strategies	232
		12.5.3	ISO Quality Management System	233
	Refer	ences		234
13	Qual	ity Cont	rol at Input	235
	13.1	Introdu	ction	235
	13.2	Accepta	ance Sampling for Attribute	235
		13.2.1	Concepts of Acceptance Sampling	235
		13.2.2	Acceptance Sampling Plan	236
		13.2.3	Operating-Characteristic Curve	236
		13.2.4	Average Outgoing Quality	237
		13.2.5	Acceptance Sampling Based on Binomial	
			Distribution	237
		13.2.6	Acceptance Sampling Based on Hypergeometric	
			Distribution	240
	13.3		ance Sampling for a Normally Distributed Variable	241
	13.4		ance Sampling for Lifetime	242
	13.5	Accept	ance Sampling for Variable Based on the Binomial	
		Distrib	ution	245
	13.6	Supplie	er Selection	247
		13.6.1	A Mathematical Model for Component Purchasing	
			Decision	247
		13.6.2	Supplier Selection Problem Involving Strategic	
			Partnership with Suppliers	248
	Refer	ences		249

Contents xv

14	Statis	tical Pro	cess Control	251
	14.1		tion	251
	14.2	Control	Charts for Variable	251
		14.2.1	Concepts of Control Charts	251
		14.2.2	Shewhart Mean Control Charts	252
		14.2.3	Range Chart	253
		14.2.4	Errors of a Control Chart	253
		14.2.5	Average Run Length and Average Time to Signal	254
	14.3	Construc	ction and Implementation of the Shewhart	
		Control	Chart	256
		14.3.1	Construction of Trial Control Chart	256
		14.3.2	Sampling Strategy	257
		14.3.3	Nonrandom Patterns on Control Charts	258
		14.3.4	Warning Limits	259
		14.3.5	Out-of-Control Action Plan	259
	14.4	Process	Capability Indices and Fraction Nonconforming	260
		14.4.1	Process Capability Indices	260
		14.4.2	Fraction Nonconforming	262
	14.5	Multiva	riate Statistical Process Control Methods	263
		14.5.1	Multivariate Control Charts	263
		14.5.2	Multivariate Statistical Projection Methods	263
	14.6	Control	Charts for Attribute	264
		14.6.1	Control Chart for Fraction Nonconforming	264
		14.6.2	Control Chart for the Number of Defects Per	
			Inspected Item	265
		14.6.3	Control Chart for the Average Number	
			of Defects Per Item	265
	Refer	ences		266
15	Qual	ity Contr	ol at Output	267
	15.1	Introduc	ction	267
	15.2	Optimal	Screening Limit Problem	267
		15.2.1	Screening Limit Problem	267
		15.2.2	An Optimization Model	268
	15.3	Screening	ng Tests	270
		15.3.1	Types of Manufacturing Defects	270
		15.3.2	Burn-in	272
		15.3.3	Environmental Stress Screening	273
		15.3.4	Comparison of ESS and Burn-in	273
	15.4	Optimal	Component-Level Burn-in Duration	274
	15.5	Optimal	System-Level Burn-in Duration	277
		15.5.1	Reliability Model	278
		15.5.2	Cost Model	279
	Refer	ences		280

xvi Contents

Par	t IV	Product	Quality and Reliability in Post-manufacturing Phase	
16	Prod	luct Warr	ranty	283
	16.1		tion	283
	16.2	Product	Warranties	283
		16.2.1	Concepts and Roles of Warranty	283
		16.2.2	Maintenance-Related Concepts	284
	16.3	Warrant	y Policies	284
		16.3.1	Classification of Warranty Policies	284
		16.3.2	Typical Warranty Policies	285
		16.3.3	Special Policies for Commercial and Industrial	
			Products	287
		16.3.4	Reliability Improvement Warranties	288
	16.4	Reliabili	ity Models in Warranty Analysis	288
		16.4.1	Reliability Characteristics of Renewal Process	289
		16.4.2	Reliability Characteristics of Minimal Repair	
			Process	290
		16.4.3	Imperfect Repair Models for Modeling Effect	
			of Preventive Maintenance	290
		16.4.4	Bivariate Reliability Models	293
		16.4.5	Bi-failure-Mode Models	294
	16.5	Warrant	y Cost Analysis	294
		16.5.1	Cost Analysis for Non-repairable Product	
			Under One-Dimensional FRW	295
		16.5.2	Cost Analysis for Repairable Product Under	
			One-Dimensional FRW	296
		16.5.3	Cost Analysis for One-Dimensional PRW Policy	296
		16.5.4	Cost Analysis for Two-Dimensional FRW Policy	297
	16.6		Warranty Servicing	299
		16.6.1	Spare Part Demand Prediction	299
		16.6.2	Optimal Repair–Replacement Decision	300
		16.6.3	Field Information Collection and Analysis	300
	Refe	rences		301
17	Mai	ntenance	Decision Optimization	303
	17.1		ction	303
	17.2	Mainten	nance Policy Optimization	303
		17.2.1	Maintenance Tasks	304
		17.2.2	Timing of Maintenance Tasks	307
		17.2.3	Optimization of Maintenance Policies	308

Contents xvii

17.3	Repair-	Replacement Policies	308
	17.3.1	Repair Cost Limit Policy and Its Optimization	
		Model	309
	17.3.2	Repair Time Limit Policy and Its Optimization	
		Model	310
	17.3.3	Failure Counting Policy with a Reference	
		Age and Its Optimization Model	311
17.4	Time-B	ased Preventive Replacement Policies	313
	17.4.1	Age Replacement Policy and Its Optimization	
		Model	313
	17.4.2	Periodic Replacement Policy with Minimal	
		Repair and Its Optimization Model	315
	17.4.3	Block Replacement Policy and Its Optimization	
		Model	315
	17.4.4	Discussion	316
17.5	Inspecti	ion Policies	316
	17.5.1	Inspection Policy with Perfect Maintenance	
		and Its Optimization Model	317
	17.5.2	Inspection Policy with Minimal Repair	
		and Its Optimization Model	318
17.6		on-Based Maintenance	319
17.7	System	-Level Preventive Maintenance Policies	320
	17.7.1	Group Preventive Maintenance Policy	320
	17.7.2	Multi-level Preventive Maintenance Program	322
	17.7.3	Opportunistic Maintenance Policy	322
17.8	A Simp	ble Maintenance Float System	324
Refer	ences		326