Contents

1	Sole	of Concrete—Mix Proportion	1				
	1.1	Theoretical Foundation for Past Mix Proportion	2				
			2				
			4				
		1.1.3 Weymouth Grap Grading Method	5				
	1.2	Inadaptability Between Old Mix Proportion					
		and Modern Concrete	7				
	1.3	Reasons and Puzzles	1				
	1.4	Thinking About Establishing the Modern Concrete					
		Mix Proportion Theory	_				
	A.1	Others					
		A.1.1 Different Opinions					
	Refe	rences	3				
2	Impo	ortant Raw Material—Coarse Aggregate	5				
_	2.1	Aggregate Varieties and Causes Overview					
	2.2	Effects of Different Rock Aggregates on Performance					
		of Concrete					
		2.2.1 Effects on Strength	0				
		2.2.2 Effects of Rock Mechanical Property on Other					
		Performances of Concrete	2				
	2.3	Two Different Opinions	2				
		2.3.1 Different Opinions About Rock Strength					
		Requirement in Specification	2				
		2.3.2 Utilization of Gravel	3				
	Refe	rences	4				
3	Core	e Raw Material—Cement	5				
	3.1	Effects of Cement Property Indexes	_				
	5.1	on Concrete Performance	5				
	3.2	Overview of Cement Production Process	_				
	ے. د	Overview of Comment Household Houses	_				

Contents

	3.3	Effect of Modern Cement Production Process on Quality	40			
	2.4	of Concrete	40			
	3.4	Production Technology?	43			
	3.5	Conclusions	45			
		rences	45			
	Keie	lences	73			
4	Alka	li-Aggregate Reaction, Where Are You?	47			
	Refe	rences	52			
5	Is Ai	Is Air-Entraining Agent a Panacea for Solving				
		t Resistance Problem?	53			
	5.1	Freeze-Thaw Damage on Engineering	53			
	5.2	World-Recognized Measure for Enhancing Frost				
		Resistance—Adding Air-Entraining Agent	56			
	5.3	Overview of Freeze-Thaw Damage Theory	59			
	5.4	Research on Method and Measure for Enhancing Frost				
		Resistance of Practical Engineering	60			
	5.5	What is the Correct Method and Range of Using				
		Air-Entraining Agents (AEAs)	62			
	5.6	Conclusions	67			
	Refe	rences	67			
_	D	Jing and Eslas Catting Which to Datton?	69			
6	6.1	Reasons for Breeding	70			
	6.2	Reasons for False Setting	76			
	6.3		81			
	6.4	Detriment of Breeding and False Setting	81			
		rences	82			
	Kele	Tences	02			
7	Fibe	r, When Is Useful?	83			
	7.1	Fate and Experiences in Fiber-Reinforced Concrete	83			
	7.2	Experimental Method and Conclusion	84			
	7.3	Reason Analyzing	87			
	7.4	Conclusions	89			
	Refe	rences	89			
8	Can	cer of Modern Concrete—Cracks	91			
	8.1	Summary	91			
	8.2	Cause Analysis	94			
	· ·	8.2.1 Fine Questions Which Field Engineers				
		Are Unable to Solve	94			

Contents xi

		8.2.2	Seven Problems Difficult to Solve	96		
		8.2.3	Eleven Problems Able To Solve	97		
	8.3	Catego	ory of Cracks	98		
		8.3.1	Cracks of Water Loss	99		
		8.3.2	Temperature Crack	99		
		8.3.3	Drying Shrinkage Crack	100		
		8.3.4	Stress Cracks	100		
	8.4	Cause,	, Detriment, and Prevention of Dehydration Crack	102		
		8.4.1	Causes for Dehydration Crack	103		
		8.4.2	Harm of Dehydration Crack	103		
		8.4.3	Prevention and Treatment for Dehydration Crack	104		
	Refer	ences		105		
9	Flv A	sh. Re	ally Only Advantages?	107		
	9.1		ms Unsolved in the Utilization of Fly Ash	107		
		9.1.1	Problems Unsolved Theoretically	107		
		9.1.2	Unsolved Technological Problems in Engineering	108		
	9.2	Severa	al Practical Projects	109		
		9.2.1	The Concrete Surface of a Parking Apron			
			in South China	109		
		9.2.2	The Concrete Surface of a Parking Apron			
			in North China	112		
		9.2.3	Universal Harmless Cracks Phenomena			
			in the Construction of Airport	113		
		9.2.4	The Floorslab of Terminal Buildings in an Airport			
			in North China	113		
		9.2.5	Floor in a Plant in Southwest China	115		
		9.2.6	Other Cases	117		
	9.3	Concl	usions	119		
	Refer	ences		120		
10	Admixtures: All Medicines Have Their Own Side Effects 12					
	10.1		ive Effects of Several Main Chemical Admixtures			
			Author	121		
			Water Reducer	121		
			Air-Entraining Agent	122		
			Expansive Agent	123		
			Early-Strength Agent.	123		
	10.2		s Quality Accident Caused by Improper Chemical			
			xture Dosage	124		
			Water Reducer	124		
		10.2.2	Retarding Agents	125		

xii Contents

		10.2.3 Early-Strength Agent. 10.2.4 Others	127 127
	10.3	What Is the Correct Using Method	
		of Chemical Admixtures?	128
	10.4	Conclusions	128
	Refer	ences	129
11	Fatal	Factor for Durability: Drying Shrinkage	131
	11.1	Generating Process of Drying Shrinkage Crack	131
	11.2	Harm of Dehydration Crack	132
		11.2.1 Drying Shrinkage Crack has Great Effects	
		on Flexural Strength and Directly Threatens Safety	
		of Concrete Structure	135
		11.2.2 Structures Destroyed Directly in Some Regions	137
		11.2.3 Frost Resistance and Impermeability of Pavement	1.40
		Concrete are Decreased in Cold Regions	140
		11.2.4 The Durability and Security of Thin-Walled Structure and Reinforced Concrete Structure with Small	
		Protection Layer	140
		11.2.5 In Some Regions in the South and North, Drying	170
		Shrinkage Crack is also Manifested as a Kind	
		of Shallow and Harmless Crack Which has no	
		Practical Effects on Security and Durability	
		of Engineerings	144
	11.3	Causes for Drying Shrinkage Crack	145
	11.4	Conclusions	147
	Refer	ences	148
12	Dhyei	ician of Concrete—Self-healing	149
14	12.1	Discovery of Self-curing Phenomenon	149
	12.1	Cause Analysis	157
	12.3	Application of Self-curing Principle During	13,
	12.5	Practical Engineering	158
	12.4	Conclusions	162
13	Uiah	-Performance Concrete, Really High Performance?	165
13	111gn 13.1	Difference Between Normal Concrete	10.
	13.1	and High-Performance Concrete	165
	13.2	Comparison of Application Effect During	10.
	10.2	Practical Engineering	168
	13.3	Conclusions	169
		ences	170

Contents xiii

14	What	t Is the Correct Idea for Durability Research?	171
	14.1	Reason for Poorer Durability and Research Mistakes	171
	14.2	Correct Method for Solving Durability Problem	173
	14.3	Conclusions	177
	Refer	ences	177
15	Scien	tific Foundation of Modern Concrete	179
	15.1	Discovery of Problems	180
	15.2	Conception of the Second-stage Concrete	183
	15.3	"Three-Stage Hypothesis"	186
	15.4	Cause Analysis	192
	15.5	Scientific Meaning of Three-stage Theory Toward	
		Modern Concrete	196
	15.6	Conclusions	198
	Refer	ences	199
16	Sumi	nary Report of Experimental Study on Dehydration	
10		k Appearing in the Construction of Turpan Civil	
	Airpo	ort Cement Concrete Pavement	201
	16.1	Experimental Meaning and Purpose	201
		16.1.1 Experimental Meaning	202
		16.1.2 Aims of the Experiments	203
	16.2	Experimental Program	204
		16.2.1 Emerging Time, Size, Shape, and Character	
		of Dehydration Crack	204
		16.2.2 Harmfulness of Dehydration Crack	205
		16.2.3 Causes for Generation of Dehydration Crack	207
		16.2.4 Experimental Program	207
		16.2.5 Organizations and Division of Labor	215
	16.3	Experimental Procedures	217
		16.3.1 Preparation of Materials, Crews, and Machines	217
		16.3.2 Concrete Mix Proportion	217
		16.3.3 Process Controlling	219
		16.3.4 Process of Curing and Observing	230
		16.3.5 Experiment on Penetration Speed	234
		16.3.6 Experiment on Water-to-Cement Ratio (W/C)	237
	16.4	Experimental Summary and Conclusion	240
		16.4.1 Introduction	240
		16.4.2 Summary on Environment Climate Influence	240
		16.4.3 Summary on Raw Materials	242
		16.4.4 Summary on Concrete Mix Proportion	244
		16.4.5 Summary on Adding Polyester Fiber	247
		16.4.6 Summary on net- shaped Crack	249

Contents

	16.4.7 Summary on Construction Technology	
16.5	Total Requirements for Construction of Concrete Used in Turpan Airport	253 254
	16.5.2 Controlling of Construction Process	254
Refer	ences	258
Appendix	A	259
Appendix	B	267
Appendix	C	271