Contents

Part I Basic Problems

1	Principles of Vector Orientation and Vector Orientated					
	Control Structures for Systems Using Three-Phase					
		AC Machines				
	1.1		tion of the Space Vectors and Its Vector	3		
			ated Philosophy	3		
	1.2		Structures with Field-Orientated Control	,		
			ree-Phase AC Drives	8		
	1.3		Structures of Grid Voltage Orientated			
		Contro	ol for DFIM Generators	12		
	Refe	rences		16		
2	Inverter Control with Space Vector Modulation					
	2.1	2.1 Principle of Vector Modulation				
	2.2	-	culation and Output of the Switching Times			
	2.3	•		25		
		2.3.1	Actually Utilizable Vector Space	25		
		2.3.2				
			and Signal Processing	27		
		2.3.3				
		2.5.5	and Its Compensation	28		
	2.4	Doolis	ation Examples	30		
	2.4		Modulation with Microcontroller SAB	30		
		2.4.1		21		
			80C166	31		
		2.4.2	Modulation with Digital Signal Processor			
			TMS 320C20/C25	35		
		2.4.3	Modulation with Double Processor			
			Configuration	41		

digitalisiert durch DEUTSCHE NATIONAL BIBLIOTHEK

xii Contents

	2.5	Specia	l Modulation Procedures	45			
		2.5.1	Modulation with Two Legs	45			
		2.5.2	Synchronous Modulation	46			
		2.5.3	Stochastic Modulation	48			
	2.6	Degree	es of Freedom in Modulation	53			
		2.6.1	Modulation with Different Combinations				
			of Component Vectors	54			
		2.6.2	Modulation with Different Sequences				
			of Component Vectors	55			
		2.6.3	Execution Time of Zero Vectors	57			
	Refe	rences	•••••	58			
3	Mac	hine Mo	dels as Prerequisite to Design the Controllers				
			ers	61			
	3.1		al Issues of State Space Representation	61			
		3.1.1	Continuous State Space Representation	61			
		3.1.2	Discontinuous State Space Representation	63			
	3.2	Induct	ion Machine with Squirrel-Cage Rotor (IM)	68			
		3.2.1	Continuous State Space Models of the IM				
			in Stator-Fixed and Field-Synchronous				
			Coordinate Systems	69			
		3.2.2	Discrete State Space Models of the IM	77			
	3.3	Perma	nent Magnet Excited Synchronous Machine (PMSM)	83			
		3.3.1	Continuous State Space Model of the PMSM				
			in the Field Synchronous Coordinate System	83			
		3.3.2	Discrete State Space Model of the PMSM	86			
	3.4	Doubly	y-Fed Induction Machine (DFIM)	he PMSM			
		3.4.1	Continuous State Space Model of the DFIM				
			in the Grid Synchronous Coordinate System	88			
		3.4.2	Discrete State Model of the DFIM	91			
	3.5	Genera	alized Current Process Model for the Two				
		Machi	eralized Current Process Model for the Two hine Types IM and PMSM				
	3.6	Nonlin	ear Properties of the Machine Models and the				
		Way to	o Nonlinear Controllers	95			
		3.6.1	Idea of the Exact Linearization Using				
			State Coordinate Transformation	95			
		3.6.2	Flatness and the Idea of the Flatness-Based				
			Control Design	102			
	Refe	rences		112			

Contents · xiii

4	Problems of Actual-Value Measurement						
			Orientation	113			
	4.1		sition of the Current	113			
	4.2		sition of the Speed	116			
	4.3		ilities for Sensor-Less Acquisition				
		of the	Speed	122			
		4.3.1	Example for the Speed Sensor-Less				
			Control of an IM Drive	123			
		4.3.2	Example for the Speed Sensor-Less Control				
			of a PMSM Drive	131			
	4.4	Field (Orientation and Its Problems	132			
		4.4.1	Principle and Rotor Flux Estimation				
			for IM Drives	133			
		4.4.2	Calculation of Current Set Points	138			
		4.4.3	Problems of the Sampling Operation				
			of the Control System	139			
	Refe	rences		144			
5		Dynamic Current Feedback Control for Fast Torque					
	_		n Drive Systems	149			
	5.1	•	About Existing Current Control Methods	150			
	5.2		nmental Conditions, Closed Loop Transfer				
			on and Control Approach	160			
	5.3	5.3 Design of a Current Vector Controller with					
			Beat Behaviour	164			
		5.3.1	Design of a Current Vector Controller				
			with Dead-Beat Behaviour with Instantaneous				
			Value Measurement of the Current				
			Actual-Values	164			
		5.3.2	Design of a Current Vector Controller				
			with Dead-Beat Behaviour for Integrating				
			Measurement of the Current Actual-Values	169			
		5.3.3	Design of a Current Vector Controller with				
			Finite Adjustment Time	171			
	5.4	_	n of a Current State Space Controller				
		with D	Dead-Beat Behaviour	172			
		5.4.1	Feedback Matrix K	173			
		5.4.2	Pre-filter Matrix V	174			

xiv Contents

	5.5	Treatm	nent of the Limitation of Control Variables	177		
		5.5.1	Splitting Strategy at Voltage Limitation	180		
		5.5.2	Correction Strategy at Voltage Limitation	184		
	Refe	rences		186		
6	Equivalent Circuits and Methods to Determine					
•			Parameters	189		
	6.1		alent Circuits with Constant Parameters	189		
		6.1.1	Equivalent Circuits of the IM	189		
		6.1.2	Equivalent Circuits of the PMSM	194		
	6.2		ling of the Nonlinearities of the IM	194		
		6.2.1	Iron Losses	195		
		6.2.2	Current and Field Displacement	197		
		6.2.3	Magnetic Saturation	201		
		6.2.4	Transient Parameters	206		
	6.3	Parame	eter Estimation from Name Plate Data	207		
		6.3.1	Calculation for IM with Power Factor $\cos \varphi$	208		
		6.3.2	Calculation for IM Without Power Factor cosp	211		
		6.3.3	Parameter Estimation from Name Plate			
			of PMSM	212		
	6.4	Autom	natic Parameter Estimation for IM in Standstill	213		
		6.4.1	Pre-considerations	213		
		6.4.2	Current-Voltage Characteristics of the Inverter,			
			Stator Resistance and Transient Leakage			
			Inductance	215		
		6.4.3	Identification of Inductances and Rotor			
			Resistance with Frequency Response Methods	217		
		6.4.4	Identification of the Stator Inductance with			
			Direct Current Excitation	223		
	Refe	rences		224		
7			aptation of the Rotor Time Constant			
			es	227		
	7.1		ation	227		
	7.2		fication of Adaptation Methods	232		
	7.3	-	ation of the Rotor Resistance with Model Methods	236		
		7.3.1	Observer Approach and System Dynamics	236		
		7.3.2	Fault Models	240		
		7.3.3	Parameter Sensitivity	245		
		7.3.4	Influence of the Iron Losses	249		
		7.3.5	Adaptation in the Stationary and Dynamic	~		
			Operation	250		
	Refe	rences		254		

Contents xv

8	Optimal Control of State Variables and Set Points for IM Drives				
	8.1	Objective	257		
	8.2	Efficiency Optimized Control	258		
			261		
	8.3	Stationary Torque Optimal Set Point Generation			
		8.3.1 Basic Speed Range	261		
		8.3.2 Upper Field Weakening Area	265		
		8.3.3 Lower Field Weakening Area	268		
		8.3.4 Common Quasi-stationary Control Strategy	271		
		8.3.5 Torque Dynamics at Voltage Limitation	273		
	8.4	Comparison of the Optimization Strategies	277		
	8.5	Rotor Flux Feedback Control	280		
	Refer	rences	282		
9	Nonlinear Control Structures for Three-Phase				
	AC I	Orive Systems	283		
	9.1	Existing Problems at Linear Controlled Drive Systems	283		
	9.2	Nonlinear Control Structures for Drive Systems			
		with IM	284		
		9.2.1 Nonlinear Control Based on Exact			
		Linearization of IM	284		
		9.2.2 Nonlinear Control Based on Flatness of IM	289		
	9.3	Nonlinear Control Structure for Drive Systems			
	7.0	with PMSM	298		
		9.3.1 Nonlinear Control Based on Exact			
		Linearization of PMSM	298		
		9.3.2 Nonlinear Control Based on Flatness	270		
		of PMSM	303		
	D - £		309		
	Kerer	rences	305		
Par	t III	Wind Power Plants with DFIM			
10	T :	ar Control Structure for Wind Power Plants with DFIM	313		
10		Construction of Wind Power Plants with DFIM	313		
	10.1				
	10.2	Grid Voltage Orientated Controlled Systems	315		
		10.2.1 Control Variables for Active and Reactive Power	316		
		10.2.2 Dynamic Rotor Current Control for Decoupling			
		of Active and Reactive Power	317		
		10.2.3 Problems of the Implementation	319		
	10.3	Front-End Converter Current Control	321		
		10.3.1 Process Model	322		
		10.3.2 Controller Design	324		
	Refer	rences	326		

xvi Contents

11	Nonlinear Control Structure for Wind Power Plants with DFIM			327
	11.1		g Problems with Linear Controlled Wind	32,
			Plants	327
	11.2	Nonline	ear Control Based on Exact Linearization	
		of DFI	M	328
		11.2.1	Controller Design	328
		11.2.2	Control Structure with Direct Decoupling	
			for DFIM	331
	11.3 Nonlinear Control Based on Flatness of DFIM		ear Control Based on Flatness of DFIM	335
		11.3.1	Controller Design	335
			Flatness-Based Control Structure for DFIM	338
	Refer	ences		342
Apj	pendix			345
Ind	ex			361