Contents

	on of Neural Networks in High Assurance Systems: A	1			
	humann, Pramod Gupta, Yan Liu	•			
1	Introduction				
2	Application Domains	3			
	2.1 Aircraft Control	4			
	2.2 Automotive	4			
	2.3 Power Systems	5			
	2.4 Medical Systems	6			
	2.5 Other Applications	7			
3	Toward V&Vof NNs in High Assurance Systems				
	3.1 V&Vof Software Systems	8			
	3.2 V&V Issues and Gaps for NN-Based Applications	10			
	3.3 V&VApproaches for Neural Networks	11			
4	Conclusions	15			
Robust A	s	16			
		21			
	M. Annaswamy, Jinho Jang, Eugene Lavretsky				
1	Introduction	21			
2	Problem Statement	22			
3	Adaptive Controller	24			
	3.1 Reference Model	24			
	3.2 Adaptive Controller Design	24			
	3.3 Stability Analysis	25			
4	Delay Margins	25			
	4.1 (1, 1) Pade Approximation $(\eta = \Delta_1(s)u)$	26			
	4.2 (2, 2) Pade Approximation $(\eta = \Delta_2(s)u)$	30			
4	3.2 Adaptive Controller Design	• • • • • • • • • • • • • • • • • • • •			

VIII Contents

5	Nonlin	nearity Margins	31
	5.1	Interpretation of Theorem 3	34
	5.2	Numerical Model: Hypersonic Vehicle	34
	5.3	Relation between $e(t_0)$, $\epsilon(x_p)$, and N	36
D 0			20
			38
Α	Apper	ndix	39
Network (Comple	xity Analysis of Multilayer Feedforward Artificial	
Neural Ne	etworks		41
Xiao-Hua	Yu		
1	Introd	uction	41
2	Prunir	ng Algorithms	44
3	Comp	uter Simulation Results	50
4	Summ	nary	53
		·	
Reference	s		53
Design an	d Flight	t Test of an Intelligent Flight Control System	57
		arhorst, James M. Urnes, Sr.	
1		uction	57
2		Program	58
3		Experiment	59
4		oller Architecture	61
5		rements Validation	63
3	5.1	System Stability	64
	5.2	Aeroservoelastic Margin	64
	5.3	Handling Qualities	66
	5.4	Nonlinear Systems Requirements Validation	67
6		Controls Software and System Verification	70
7		Test	74
8		usions	75
U	Conci	usions	, 5
Reference	es		76
Stability	Convor	gence, and Verification and Validation Challenges of	
		tive Flight Control	77
		Stephen A. Jacklin	,,
1		luction	77
2		ergence and Stability of Neural Net Direct Adaptive	, ,
2		Control	79
	_	Direct Adaptive Control Approach	80
	2.1	* **	82
	2.2	Stability and Convergence	90
2	2.3	Unmodeled Dynamics	93
3	roieni	tial Improvements	- ラフ

Contents

	3.1	Direct Adaptive Control with Recursive Least	
		Squares	93
	3.2	Hybrid Direct-Indirect Adaptive Control with	
		Recursive Least-Squares	96
4	Verific	cation and Validation Challenges for Adaptive Systems	99
	4.1	Simulation of Adaptive Control Systems	99
	4.2	Approach for Adaptive System V&V	101
5	Future	e Research	103
	5.1	Adaptive Control	103
	5.2	Verification and Validation	105
6	Concl	lusions	107
Reference	es	• • • • • • • • • • • • • • • • • • • •	107
Dynamic	Allocat	ion in Neural Networks for Adaptive Controllers	111
		lla, Edgar Fuller, Bojan Cukic	
1		luction	111
-	1.1	Paper Overview	113
2		mic Allocation in Neural Networks	113
_	2.1	Dynamic Cell Structures	114
	2.2	Components of DCS Neural Network	114
	2.3	DCS Algorithm	117
3		stness Analysis of Dynamic Allocation	119
3	3.1	Node Insertion	119
	3.2	Analysis for UC1 (Undesirable Condition 1)	120
	3.3	Analysis for UC2 (Undesirable Condition 2)	122
4		Driven Dynamic Allocation Algorithm	127
5		Study	131
6		lusion	138
O	Conci	usioii	136
Referenc	es		138
		s Inspired Approach to Anomaly Detection, Fault	
		Diagnosis in Automotive Engines	141
Dragan D		vic, Jianbo Liu, Kenneth A. Marko, Jun Ni	
1		luction	141
2	Resea	rch Issues in Immune Systems Engineering	143
	2.1	Anomaly Detection and Fault Localization	146
	2.2	Fault Diagnosis	148
	2.3	Automatic Control System Reconfiguration	149
3	Anomaly Detection, Fault Isolation and Diagnosis in an		
	Auton	notive Electronic Throttle System	150
	3.1	Anomaly Detection and Fault Isolation	150
	3.2	Fault Diagnosis	152
	3.3	Fever-Like Behavior in the Presence of an Unknown	
		Fault	153

X Contents

4	Anomaly Detection and Fault Isolation in Automotive	
	Crankshaft Dynamics	156
5	Conclusions and Future Work	160
Referenc	es	161
	pth Control of Submarine Operating in Shallow Water via	
	laptive Approach	165
Y.D. Song	g, Liguo Weng, Medorian D. Gheorghiu	
1	Introduction	165
2	Dynamics	166
	2.1 Nonlinear Model	167
	2.2 Fault Dynamics	168
3	Control Design	169
	3.1 Nonlinear Model	169
	3.2 Stability Analysis	171
4	Simulation Results	172
5	Conclusions	177
Referenc	es	177
Stick_Slir	p Friction Compensation Using a General Purpose	
	laptive Controller with Guaranteed Stability	179
	Mehrabian, Mohammad Bagher Menhaj	110
An Keza . 1	Introduction	179
2	The Neural-Network-Based Control Strategy	182
2	2.1 Indirect Adaptive Neuro-Controller	182
	2.2 Neural Network Scheme	183
	2.3 Control Oriented On-Line Identification Method	183
	2.4 Mathematical Description of the Control Scheme	184
	2.5 Training Multilayer Neural Network (MLP)	186
		186
3		187
4	Stability Analysis	188
4		
		188
		191
_	4.3 Controller Error Sensitivity Feedback Block	191
5	Simulation Studies	192
	5.1 Example 1: A Non-linear System with a Second-	
	Order Difference Equation and Variable Reference	
	Model	192
	5.2 Example 2: A Non-linear Plant Subjected to	
	Uncertainty	194
6	Stick-Slip Friction Compensation Using the Introduced	
	Neuro-Control Algorithm	195
	6.1 Problem Statement	195

Contents XI

7	6.2 Concl	Simulation Results	196 200
Referenc	es		201
Modeling	g of Crue	de Oil Blending via Discrete-Time Neural Networks	205
Xiaoou L	i, Wen Y	'u	
1	Introd	luction	205
2	Crude	Oil Blending	206
3	Modeling of Crude Oil Blending via Discrete-Time Neural		
	Netwo	orks	208
4	Applie	cation Study	213
5	Concl	usion	218
Referenc	es		219
_		ning Wavelet Neural Network Controller for a	
	_	Membrane Fuel Cell	221
M. Sedigl		A. Rezazadeh	
1		luction	222
2		FC System Model	223
3	Wavel	et Neural Network and Identification Algorithm	226
	3.1	Wavelet Neural Network	226
	3.2	System Model Identification	228
4	Propo	sed Controller Design	230
	4.1	Neural Network Controller Based on Wavelet	230
	4.2	PID Neural Network Controller Based on Wavelets	230
5	Simulation Results		232
	5.1	Identification of PEMFC	232
	5.2	Control of PEMFC without Noise	233
	5.3	Control of PEMFC with Input Noise	236
	5.4	Control of PEMFC with Output Noise Problem	
6	Concl	usions	244
Referenc	es		244