Contents

1	Intro	oduction	1				
	1.1	Physical Difference Between Scattered					
		and Unscattered Photons	1				
		1.1.1 Classification of Photons	2				
		1.1.2 Physical Properties of Photons	2				
	1.2	Microscopic Imaging Through Tissue-Like Media	5				
	1.3	Monte Carlo Simulation	7				
	1.4	Direct and Inverse Approaches	8				
	1.5	Overview of the Book	10				
	Refe	rences					
2	Scat	tering of Light by Small Particles	15				
	2.1	Rayleigh Scattering and Mie Scattering	15				
	2.2	Mie Scattering Theory	16				
		2.2.1 Scattering Coefficients of a Spherical Particle	17				
		2.2.2 Scattering Cross-Section and Anisotropy Value	18				
		2.2.3 Scattering Mean Free Path Length	19				
	2.3	Stokes Vector	20				
	Refe	rences	22				
3	Mon	te Carlo Simulation for an Optical Microscope	25				
	3.1	Model of Monte Carlo Simulation	25				
	3.2	Microscopic Imaging	27				
	3.3	Effect of Polarization	30				
	3.4	Effect of Pulsed Illumination	31				
	3.5	Photon Migration Through a Layer of a Turbid Medium	33				
	3.6	Effect of Multiple Layers	36				
	3.7	Effect of Multi-sized Scatterers	37				
	3.8	Effect of Particle Aggregation	39				
		3.8.1 Effective Mie Scattering by a Spherical Aggregate	40				
		3.8.2 Numerical Results	41				

Contents

	3.9		of Multi-photon Excitation	43			
	3.10	Effect	of Coherence	45			
	Refer	ences .		48			
4	Effoo	tiva Dai	int Samuel Function	51			
4			int Spread Function	51			
	4.1		ept of Effective Point Spread Function	51			
	4.2		Dimensional Case	53			
	Refer	ences .		56			
5	Angle	e-Gatin	g Mechanism	57			
	5.1	Princip	ple of Angle-Gating	57			
		5.1.1	Concept of Angle-Gating	57			
		5.1.2	Angle-Gating in a Microscope	59			
	5.2	Angle	-Gating in Transmission Optical Microscopy	61			
		5.2.1	Transmission Optical Microscope				
			and Turbid Samples	61			
		5.2.2	Effect of Annular Illumination	-			
		0	and Collection Objectives	63			
		5.2.3	Effect of the Numerical Aperture of the Matching	0.5			
		5.2.5	Objectives	68			
		5.2.4	Imaging with Circular and Annular Objectives	70			
		5.2.5	Discussion	74			
	5.3		-Gating in a Reflection Optical Microscope	76			
	3.3	5.3.1	Reflection Optical Microscope and Turbid Samples	76			
		5.3.2	Effect of an Annular Imaging Objective	78			
		5.3.3	Effect of the Numerical Aperture of an Objective	79			
		5.3.4	Imaging with Circular and Annular Objectives	80			
	5.4			82			
	3.4	5.4.1	ution in an Optical Microscope	83			
			Resolution Contributed by Scattering Photons	83			
		5.4.2	Effects of the Numerical Aperture	0.4			
		5.40	and the Pinhole Size	84			
	D 6	5.4.3	Relationship of Resolution to Signal Level	87			
	References						
6	Polar	ization	-Gating Mechanism	91			
	6.1	Princi	rinciple of Polarization-Gating				
	6.2		zation-Gating in a Reflection Optical Microscope	92			
			Experimental Details	93			
		6.2.2	Effect of the Optical Thickness and Scatterer Size				
			on Resolution	96			
		6.2.3	Image Resolution in a Turbid Medium of Milk	101			
		6.2.4	Effect of Pinhole-Gating and Polarization-Gating	103			
		6.2.5	Dependence of the Degree of Polarization	103			
		0.2.3	on Scatter Size	104			
			OH Coulter Cife	107			

Contents

		6.2.6	Effect of Numerical Aperture	106
	6.3	Monte	Carlo Simulation in a Reflection Optical Microscope	108
		6.3.1	Degree of Polarization	108
		6.3.2	Image Resolution with Polarization-Gating Methods	109
		6.3.3	Trade-off Between Signal Strength	
			and Image Resolution	112
	6.4	Monte	Carlo Simulation in a Transmission	
	0		l Microscope	114
	6.5		ve Point Spread Function	115
	0.5	6.5.1	Effective Point Spread Function for Polarization	110
		0.5.1	Gating	115
		6.5.2	Image Resolution and Signal Level	115
		0.5.2	with Polarization-Gating Methods	116
	Refer	ences	with Folding atting Methods	118
	Reiei	crices .		110
7	Fluor	rescence	e-Gating Mechanism	121
•	7.1		verse Resolution and Signal Level	121
	7.2		Performance Through Single-Layer Homogeneous	121
	1.2		Media	123
		7.2.1	Effect of the Numerical Aperture of an Objective	123
		7.2.1	Effect of Pinhole	125
		7.2.2		125
	7.3		Effect of Scatterer Size	123
	1.3			128
			Media	128
		7.3.1	Scattering Property of a Multi-sized Turbid Layer	130
		7.3.2	Effect of Size Distributions	
	7.4	7.3.3	Effect of Concentration Distributions	132
	7.4		Performance Through Double-Layer Turbid Media	135
		7.4.1	Image Performance Through Double-Layer	105
			Homogeneous Turbid Media	135
		7.4.2	Image Performance Through Double-Layer	
			Skin Media	138
		7.4.3	Image Performance Through Double-Layer	100
			Human Cortex Media	139
	7.5		of Aggregation	142
	Refer	rences .		143
o	N .F., 14	. 1 4	. I'M I I	1 45
8			Fluorescence Imaging	145
	8.1	_	Resolution and Signal Level.	145
		8.1.1	Monte Carlo Simulation Model and Effective	146
		0.1.2	Point Spread Function	146
		8.1.2	Image Resolution	150
		8.1.3	Signal Level	151
		8.1.4	Penetration Depth	151

xii Contents

	8.2	Influence of System Parameters	154
		8.2.1 Numerical Aperture	155
		8.2.2 Confocal Pinhole	156
	8.3	Two-Photon Imaging Through Complex Scattering	
		Medium Structure	157
		8.3.1 Multiple Sizes	157
		8.3.2 Multiple-Layer Structures	165
	8.4	Three-Photon Fluorescence Imaging	168
	Refe	rences	172
9	Imag	ge Reconstruction	175
	9.1	Deconvolution	175
	9.2	Noise Factor	179
	9.3	Image Reconstruction with Optical Gating	180
	Refe	rences	183
In	dex .		185