

Contents

Preface — V

1	General introduction — 1
1.1	Definition of the interfacial region and interfacial tension — 1
1.2	Role of interfacial phenomena — 3
1.3	Outline of the book — 9
2	Origin of charge at interfaces: Structure of the electrical double layer — 17
2.1	Origin of charge on surfaces — 17
2.1.1	Surface ions — 17
2.1.2	Ionization of surface groups — 17
2.1.3	Isomorphic substitution — 19
2.1.4	Specific adsorption of ions — 20
2.2	Structure of the electrical double layer — 21
2.2.1	Diffuse double layer (Gouy and Chapman) — 21
2.2.2	Stern–Grahame model of the double layer — 25
2.2.3	Capacitance of the double layer — 28
2.2.4	Double layer investigation — 30
3	Electrokinetic phenomena and zeta potential — 41
3.1	Stern–Grahame model of the double layer — 45
3.1.1	Calculation of zeta potential from particle mobility — 46
3.1.2	Measurement of electrophoretic mobility and zeta potential — 51
4	Van der Waals attraction — 65
4.1	Introduction — 65
4.2	Intermolecular attraction between atoms or molecules — 65
4.2.1	Dipole-dipole interaction (Keesom–van der Waals interaction) — 66
4.2.2	Dipole-induced dipole interaction (Debye–van der Waals interaction) — 66
4.2.3	London–van der Waals interaction (dispersion interaction) — 67
4.2.4	General approach for the van der Waals attraction — 67
4.2.5	Hydrogen bonding — 68
4.2.6	Hydrophobic (bonding) interaction — 69
4.2.7	Van der Waals attraction of macroscopic bodies — 69
4.2.8	Medium effect on van der Waals attraction — 74

4.2.9	Retardation effect — 77
4.2.10	Direct measurement of van de Waals attraction between macroscopic bodies — 78
5	Double layer repulsion — 81
5.1	Introduction — 81
5.2	Interaction between similar and dissimilar flat plates — 82
5.3	Calculation of electrostatic interaction using the Gibbs energy concept — 84
5.4	Charge and potential distribution — 86
5.5	Interaction between spherical particles — 88
5.6	Effect of increasing electrolyte concentration, valency of counterions and Stern potential — 92
5.7	Effect of particle concentration — 92
6	Combination of double layer repulsion and van der Waals attraction theory of colloid stability — 97
6.1	Introduction — 97
6.2	Stability of charge stabilized systems. Theory of colloid stability of hydrophobic colloids: Deryaguin–Landau–Verwey–Overbeek (DLVO) theory — 97
6.3	Mechanism of aggregation — 99
6.4	Kinetics of flocculation of dispersions — 101
6.4.1	Diffusion limited aggregation (fast flocculation kinetics) — 101
6.4.2	Potential limited aggregation (slow flocculation kinetics) — 103
6.4.3	Weak (reversible) flocculation — 104
6.4.4	Orthokinetic flocculation — 105
6.4.5	Aggregate structure — 109
6.5	Influence of particle number concentration — 110
6.6	States of suspension on standing — 114
6.7	Sedimentation of suspensions and its prevention — 119
6.7.1	Sedimentation rate of suspensions — 120
6.7.2	Prevention of sedimentation and formation of dilatant sediments — 125
7	The liquid/liquid interface and surfactant adsorption — 133
7.1	Introduction — 133
7.2	Surfactant adsorption — 134
7.2.1	The Gibbs adsorption isotherm — 134
7.2.2	Equation of state approach — 137
7.2.3	The Langmuir, Szyszkowski and Frumkin equations — 139

7.3	Effectiveness of surfactant adsorption at the liquid/liquid interface — 140
7.4	Efficiency of adsorption of surfactant at the liquid/liquid interface — 140
7.5	Adsorption from mixtures of two surfactants — 142
7.6	Interfacial tension measurements — 143
7.6.1	The Wilhelmy plate method — 143
7.6.2	The pendent drop method — 144
7.6.3	The du Nouy ring method — 144
7.6.4	The drop volume (weight) method — 145
7.6.5	The spinning drop method — 146
7.7	Interfacial rheology — 147
7.7.1	Interfacial shear viscosity — 147
7.7.2	Measurement of interfacial viscosity — 147
7.7.3	Interfacial dilational elasticity — 148
7.7.4	Interfacial dilational viscosity — 148
7.7.5	Non-Newtonian effects — 149
7.8	Correlation of emulsion stability with interfacial rheology — 149
7.8.1	Mixed surfactant films — 149
7.8.2	Protein films — 150
8	The solid/liquid interface and surfactant adsorption — 153
8.1	Introduction — 153
8.2	Adsorption of ionic surfactants on hydrophobic surfaces — 154
8.3	Examples of adsorption isotherms for ionic surfactants on hydrophobic surfaces — 158
8.4	Adsorption of ionic surfactants on polar surfaces — 161
8.5	Adsorption of nonionic surfactants — 162
8.6	Theoretical treatment of surfactant adsorption — 165
8.7	Examples of typical adsorption isotherms of model nonionic surfactants on hydrophobic solids — 166
9	Polymers at interfaces — 171
9.1	Introduction — 171
9.2	Polymers (macromolecules) — 172
9.3	Solution properties of polymers — 173
9.4	General classification of polymeric surfactants — 179
9.5	Polymers at interfaces — 181
9.6	Theories of polymer adsorption — 185
9.7	Scaling theory for polymer adsorption — 193
9.8	Experimental techniques for studying polymeric surfactant adsorption — 195

9.8.1	Measurement of the adsorption isotherm — 195
9.8.2	Measurement of the fraction of segments p — 196
9.8.3	Determination of the segment density distribution $p(z)$ and adsorbed layer thickness δ_h — 196
9.9	Examples of the adsorption isotherms of nonionic polymeric surfactants — 200
9.10	Kinetics of polymer adsorption — 205
10	Interaction between particles or droplets containing adsorbed polymer layers and the theory of steric stabilization — 209
10.1	Introduction — 209
10.2	Interaction between particles or droplets containing adsorbed polymer layers — 209
10.2.1	Mixing interaction G_{mix} — 210
10.2.2	Elastic interaction G_{el} — 212
10.2.3	Total energy of interaction — 213
10.2.4	Criteria for effective steric stabilization — 213
10.3	Flocculation of sterically stabilized dispersions — 214
10.3.1	Weak flocculation — 214
10.3.2	Incipient flocculation — 215
10.3.3	Depletion flocculation — 217
10.4	Bridging flocculation by polymers and polyelectrolytes — 218
10.5	Emulsions stabilized by polymeric surfactants — 221
10.6	Suspensions stabilized using polymeric surfactants — 226
10.6.1	Polymeric surfactants in emulsion polymerization — 227
10.6.2	Dispersion polymerization — 232
10.7	Polymeric surfactants for stabilization of preformed latex dispersions — 233
10.8	Interaction forces between adsorbed layers of PMMA/MA(PEO) _n graft copolymer — 237
10.9	Use of polymeric surfactants for preparation and stabilization of nanoemulsions — 240
11	Wetting and spreading — 247
11.1	Introduction — 247
11.2	The concept of contact angle — 249
11.3	Adhesion tension — 251
11.4	Work of adhesion W_a — 252
11.5	Work of cohesion — 252
11.6	Calculation of surface tension and contact angle — 253
11.6.1	Good and Girifalco approach — 254
11.6.2	Fowkes treatment — 255

11.7	The spreading of liquids on surfaces: The spreading coefficient S — 257
11.8	Contact angle hysteresis — 257
11.8.1	Reasons for hysteresis — 259
11.8.2	Wenzel's equation — 259
11.8.3	Surface Heterogeneity — 260
11.9	The critical surface tension of wetting — 260
11.10	Effect of surfactant adsorption — 262
11.11	Wetting of powders by liquids — 263
11.12	Rate of penetration of liquids: The Rideal–Washburn equation — 265
11.13	Measurement of contact angles of liquids and surfactant solutions on powders — 266
11.14	Assessment of wettability of powders — 266
11.14.1	Sinking time, submersion or immersion test — 266
11.14.2	List of wetting agents for hydrophobic solids in water — 267
11.15	Measurement of contact angles on flat surfaces — 268
11.15.1	Sessile drop or adhering gas bubble method — 268
11.15.2	Wilhelmy plate method — 269
11.15.3	Capillary rise at a vertical plate — 270
11.15.4	Tilting plate method — 271
11.15.5	Capillary rise or depression method — 271
11.16	Wetting kinetics — 271
11.16.1	The dynamic contact angle — 272
11.16.2	Effect of viscosity and surface tension — 275
12	Dynamic process of adsorption and wetting — 277
12.1	Introduction — 277
12.2	General theory of adsorption kinetics — 277
12.3	Adsorption kinetics from micellar solutions — 281
12.4	Adsorption kinetics at the liquid/liquid interface — 283
12.5	Dilatational viscoelasticity of surfactant solutions — 284
12.6	Experimental techniques for studying adsorption kinetics — 288
12.6.1	The drop volume technique — 288
12.6.2	Maximum bubble pressure technique — 290
12.6.3	Profile analysis tensiometry (PAT) — 293
12.6.4	Capillary pressure tensiometry — 294
12.6.5	Interfacial viscoelastic measurements — 298
13	Particle deposition and adhesion — 303
13.1	Deposition of particles on surfaces — 303
13.1.1	Introduction — 303
13.1.2	Description of particle deposition — 304

13.1.3	Interaction forces in particle deposition —	307
13.1.4	Effect of polymers and polyelectrolytes on particle deposition —	311
13.1.5	Experimental methods for studying kinetics of particle deposition —	314
13.1.6	Linear deposition regime —	317
13.1.7	Nonlinear particle deposition (high coverage) —	324
13.1.8	Particle deposition on heterogeneous surfaces —	329
13.2	Particle-surface adhesion —	333
13.2.1	Surface energy approach to adhesion —	333
13.2.2	Experimental methods for measurement of particle-surface adhesion —	335

Index — 339