Contents

Preface — V

1	Introduction —— 1
2	Structure and properties of water —— 7
2.1	Structure of water — 7
2.2	Properties of water —— 10
2.2.1	Density —— 10
2.2.2	Phase diagram – melting point and boiling point —— 13
2.2.3	Energetic quantities —— 15
2.2.4	Viscosity —— 17
2.2.5	Surface tension —— 18
2.3	Water as a solvent —— 23
2.4	Problems —— 26
3	Concentrations and activities —— 27
3.1	Introduction —— 27
3.2	Concentrations —— 27
3.3	Conversion of concentration units —— 31
3.3.1	Introduction and basic equations —— 31
3.3.2	Conversion of mass concentration —— 31
3.3.3	Conversion of molar concentration — 32
3.3.4	Conversion of molality —— 33
3.3.5	Conversion of mole fraction —— 33
3.3.6	Conversion of mass fraction —— 34
3.4	Element-related concentrations —— 35
3.5	Gas phase concentrations —— 36
3.6	Electroneutrality condition and ion balance 37
3.7	Hardness as a specific concentration measure —— 38
3.8	Activities and activity coefficients —— 42
3.9	Problems —— 46
4	Colligative properties —— 47
4.1	Introduction —— 47
4.2	Vapor pressure lowering —— 47
4.3	Boiling point elevation and freezing point depression —— 49
4.4	Osmotic pressure —— 51
4.5	Colligative properties of real solutions —— 53
4.6	Problems —— 53

5	The chemical equilibrium: Some general aspects —— 55
5.1	Introduction —— 55
5.2	Law of mass action and equilibrium constants —— 55
5.3	Conventions on the use of concentration measures
	in the law of mass action —— 57
5.4	Relationships between Gibbs energy of reaction, equilibrium constants, and reaction quotients —— 58
5.5	Estimation of equilibrium constants —— 59
5.6	Equilibrium constants of reverse and overall reactions —— 60
5.7	Problems —— 61
6	Gas-water partitioning —— 63
6.1	Introduction —— 63
6.2	Henry's law —— 63
6.3	Alternative formulations of Henry's law —— 65
6.4	Estimation of Henry's law constants for volatile substances — 67
6.5	Open and closed systems —— 67
6.6	Solubilities of atmospheric gases in water —— 68
6.7	Calculation of equilibrium concentrations in closed systems —— 70
6.8	Problems —— 72
7	Acid/base equilibria —— 73
7.1	Introduction —— 73
7.2	Brønsted's acid/base theory —— 73
7.3	Water as an acid/base system 76
7.4	Protolysis of acids and bases —— 77
7.5	pH of aqueous solutions of acids, bases, and salts —— 81
7.5.1	pH of acid solutions —— 81
7.5.2	pH of base solutions —— 84
7.5.3	pH of salt solutions —— 84
7.5.4	Buffer systems —— 89
7.6	Degree of protolysis and acid/base speciation —— 91
7.6.1	Monoprotic acids —— 91
7.6.2	Polyprotic acids —— 93
7.7	Carbonic acid —— 95
7.7.1	Relevance —— 95
7.7.2	Speciation of carbonic acid —— 96
7.7.3	Determination of the carbonic acid species by acid/base titrations —— 96
7.7.4	General definitions of the alkalinities and acidities on the basis
	of proton balances — 104
7.7.5	The conservative character of alkalinity —— 105

7.7.6 7.7.7	Determination of dissolved inorganic carbon (DIC) —— 106
7.7.7 7.8	pH of pristine rain water —— 107 Problems —— 108
8	Precipitation/dissolution equilibria —— 110
8.1	Introduction —— 110
8.2	The solubility product —— 110
8.3	Solubility product and solubility —— 111
8.3.1	Relationship between solubility product and solubility —— 111
8.3.2	Influence of the ionic strength on the solubility —— 113
8.3.3	Influence of side reactions on the solubility —— 114
8.4	Assessment of the saturation state of a solution —— 116
8.5	Problems —— 117
9	Calco-carbonic equilibrium —— 119
9.1	Introduction —— 119
9.2	Basic equations —— 120
9.3	Graphical representation of the calco-carbonic equilibrium:
	Tillmans curve —— 122
9.4	Assessment of the calcite saturation state —— 126
9.5	Outlook: Assessment of the calcite saturation state under consideration of complex formation —— 130
9.6	Special case: Fixed CO_2 partial pressure — 131
9.7	Problems —— 132
10	Redox equilibria —— 134
10.1	Introduction —— 134
10.2	Estimation of oxidation numbers (oxidation states) —— 134
10.3	Redox equilibria: Definitions and basic concepts —— 137
10.4	Half-reactions —— 138
10.4.1	Law of mass action and redox intensity —— 138
10.4.2	Redox intensity versus redox potential —— 143
10.4.3	Special case: Redox reactions with dissolved gases —— 145
10.4.4	Crossover points between predominance areas of reduced
	and oxidized species —— 146
10.4.5	Speciation as a function of pe —— 148
10.4.6	Water as a redox system —— 149
10.5	Construction of pe-pH diagrams —— 152
10.5.1	Introduction —— 152
10.5.2	Boundary lines for pure acid/base systems —— 153
10.5.3	Boundary lines for complex acid/base systems —— 153

10.5.4	Boundary lines for pure redox systems with oxidant and reductant in dissolved form —— 154
10.5.5	Boundary lines for pH-dependent redox systems with oxidant and reductant in dissolved form —— 155
10.5.6	Boundary lines for pH-dependent redox systems where only one partner occurs in dissolved form —— 155
10.5.7	Example: The pe-pH diagram of iron —— 156
10.5.8	Example: The pe-pH diagram of sulfur —— 162
10.6	Complete redox reactions —— 164
10.6.1	Basic relationships —— 164
10.6.2	Redox reactions within the global carbon cycle —— 170
10.6.3	Further oxidation reactions mediated by microorganisms —— 172
10.7	Problems —— 173
11	Complex formation —— 175
11.1	Introduction —— 175
11.2	Ligands in aquatic systems —— 177
11.3	Equilibrium relationships and constants —— 179
11.4	Strength of complexation: Monodentate versus polydentate
	ligands 180
11.5	Complex formation and solubility —— 182
11.6	Hydrolysis of hydrated metal ions —— 183
11.7	Speciation of metal ions —— 185
11.7.1	Introduction —— 185
11.7.2	Speciation of dissolved metal ions at constant total metal
	concentration —— 185
11.7.3	Speciation in presence of a solid that determines the liquid-phase
	concentrations —— 190
11.8	Problems —— 193
12	Sorption —— 196
12.1	Introduction —— 196
12.2	Geosorbents —— 197
12.3	Sorption isotherms —— 198
12.3.1	General considerations —— 198
12.3.2	Isotherm equations —— 199
12.3.3	Speciation —— 203
12.4	Sorption onto charged surfaces —— 204
12.4.1	Introduction —— 204
12.4.2	Mathematical description of the surface
	protonation/deprotonation —— 205
12.4.3	Modeling of ion sorption —— 211

12.5 12.6	Sorption of organic species onto organic material —— 214 Problems —— 218
13	Solutions to the problems —— 219
A	Appendix —— 263
A.1	Some important constants —— 263
A.2	Some important logarithm rules —— 263
A.3	List of important equations —— 264
Nomen	clature —— 277
Bibliog	raphy —— 283
Index -	 284