Contents

Part I Bi-level Decision Making

1	Decis	sion Mal	king and Decision Support Systems	3
	1.1	Organi	zational Decision Making	3
	1.2	Classif	ication for Decision Problems and Techniques	4
		1.2.1	Decision Problem Classification	4
		1.2.2	Decision Support Technique Classification	5
	1.3	Main I	Decision Support Techniques	6
		1.3.1	Mathematical Programming	7
		1.3.2	Multi-criteria Decision Making	8
		1.3.3	Case-Based Reasoning	10
		1.3.4	Data Warehouse and Data Mining	11
		1.3.5	Decision Tree	12
		1.3.6	Fuzzy Sets and Systems	13
	1.4	Decisio	on Support Systems	13
		1.4.1	Concepts	14
		1.4.2	Characteristics	15
		1.4.3	Components	15
	1.5 DSS Classification			
		1.5.1	Model-Driven DSS	17
		1.5.2	Data-Driven DSS	17
		1.5.3	Knowledge-Driven DSS or Intelligent DSS	18
		1.5.4	Group DSS	19
		1.5.5	Web-Based DSS	19
	1.6	DSS S	Software Illustration	20
		1.6.1	Case 1: Decider	20
		1.6.2	Case 2: A DSS for Ore Blending Cost Optimization	
			of Blast Furnaces	21
	17	Summ	arv	24

x Contents

2	Opti	mization Models	25		
	2.1	Concepts	25		
	2.2	Linear Programming			
	2.3	Non-linear Programming	29		
		2.3.1 Varieties of Non-linear Programming	29		
		2.3.2 Theories and Optimality Conditions			
		of Non-linear Programming	30		
		2.3.3 Methods for Solving Non-linear Programming			
		Problems	31		
	2.4	Multi-objective Programming	32		
		2.4.1 Multi-objective Programming Model	32		
		2.4.2 Multi-objective Linear Programming Methods	34		
		2.4.3 A Case-Based Example	36		
	2.5	Goal Programming	37		
	2.6	Stackelberg Game Model	41		
		2.6.1 Stackelberg Game and Bi-level Programming	42		
		2.6.2 Stackelberg Game and Nash Game	43		
		2.6.3 Applications of Stackelberg Games	43		
	2.7	Particle Swarm Optimization	44		
	2.8	Summary	46		
	2.0	Summary			
3	Bi-le	evel Programming Models and Algorithms	47		
	3.1	Bi-level Programming Model	47		
	3.2	Solution Theories for Linear Bi-level Programming	49		
	3.3	Kth-Best Algorithm for Linear Bi-level Programming	53		
	3.4	Kuhn-Tucker Approach for Linear Bi-level Programming	55		
	3.5	Branch-and-Bound Algorithm for Linear Bi-level			
		Programming	57		
	3.6	Penalty Function Method for Linear Bi-level Programming	59		
	3.7	Multi-level Programming Model	61		
	3.8	Summary	62		
		,			
Par	t II	Multi-level Multi-follower Decision Making			
4	D; L	evel Multi-follower Decision Making	65		
7	4.1	Problem Identification	65		
	4.2	Framework for Bi-level Multi-follower Decision Making	66		
	4.2	Bi-level Multi-follower Decision Models	68		
	4.3		68		
		4.3.1 BLMF Decision Entity-Relationship Diagram	- 68		
	4.4	4.3.2 Linear BLMF Decision Models			
	4.4	Uncooperative Bi-level Multi-follower Decision Making	76		
		4.4.1 Solution Concepts	76 77		
		4.4.7. I Deorencal Properties	//		

Contents xi

		4.4.3 Uncooperative BLMF Kth-Best Algorithm	79
		4.4.4 Uncooperative BLMF Kuhn-Tucker Approach	83
	4.5	Semi-cooperative Bi-level Multi-follower Decision Making	85
		4.5.1 Solution Concepts	86
		4.5.2 Theoretical Properties	87
		4.5.3 Semi-cooperative BLMF Kth-Best Algorithm	87
		4.5.4 Semi-cooperative BLMF Kuhn-Tucker Approach	89
	4.6	Reference-Uncooperative Bi-level Multi-follower Decision	
		Making	91
		4.6.1 Solution Concepts	91
		4.6.2 Theoretical Properties	93
		4.6.3 Reference-Uncooperative BLMF Kth-Best	
		Algorithm	95
		4.6.4 Reference-Uncooperative BLMF Kuhn-Tucker	
		Approach	102
	4.7	Summary	104
5	Bi-le	vel Multi-leader Decision Making	105
	5.1	Problem Identification	105
	5.2	Framework for Bi-level Multi-leader Decision Making	106
	5.3	Linear Bi-level Multi-leader Decision Models	107
	5.4	Concepts and Definitions	112
	5.5	Generalized Nash Equilibrium Solution	114
	5.6	BLML Particle Swarm Optimization Algorithm	115
	5.7	A Numerical Example	118
	5.8	Summary	120
,	Trut I	aval Multi fallawan Dasisian Making	121
6		evel Multi-follower Decision Making	121
	6.1	Problem Identification	
	6.2	Basic Tri-level Decision Models	123
	6.3	Tri-level Multi-follower Decision Framework	125
		6.3.1 TLMF Decision Concepts	125
		6.3.2 TLMF Decision Problem Classification	126
		6.3.3 TLMF Decision Framework	127
		6.3.4 TLMF Decision Entity-Relationship Diagrams	127
	6.4	Tri-level Multi-follower Decision Models	133
		6.4.1 General Model for TLMF Decision	133
		6.4.2 Typical Standard Models for TLMF Decision	134
		6.4.3 Hybrid TLMF Decision Models	142
	6.5	Case Studies for TLMF Decision Modeling	144
		6.5.1 Case 1: S28 Model	144
		6.5.2 Case 2: S27 Model	147
		6.5.3 Case 3: S54 Model	148
		6.5.4 Case 4: Hybrid of S41, S45 and S48 Models	150

xii Contents

	6.6	Tri-level Decision Solution Methods	151
		6.6.1 Solution Concepts	151
		6.6.2 Theoretical Properties	153
		6.6.3 Tri-level Kth-Best Algorithm	155
		6.6.4 A Numerical Example	157
	6.7	Tri-level Multi-follower Decision Solution Methods	159
		6.7.1 Solution Concepts	159
		6.7.2 Theoretical Properties	162
		6.7.3 TLMF Kth-Best Algorithm	165
		6.7.4 A Numerical Example	167
	6.8	Summary	170
D.	4 TTT	Euggu Multi lovel Desigion Melting	
ra	rt III	Fuzzy Multi-level Decision Making	
7	Fuzz	zy Bi-level Decision Making	175
	7.1	Problem Identification	175
	7.2	Fuzzy Sets and Systems	176
		7.2.1 Fuzzy Sets	177
		7.2.2 Fuzzy Numbers	178
	7.3	Fuzzy Bi-level Decision Models	183
	7.4	Fuzzy Approximation Kth-Best Algorithm	188
		7.4.1 Property and Algorithm	188
		7.4.2 Illustrative Examples	197
	7.5	Fuzzy Multi-Follower Approximation Kth-Best Algorithm	201
	7.6	Summary	205
8	Fuzz	zy Multi-objective Bi-level Decision Making	207
	8.1	Problem Identification	207
	8.2	Fuzzy Multi-objective Bi-level Decision Model	208
	8.3	Fuzzy Approximation Kuhn-Tucker Approach	219
		8.3.1 Fuzzy Approximation Kuhn-Tucker Approach	220
		8.3.2 A Case-Based Example	220
	8.4	Summary	228
9	Fuzz	zy Multi-objective Bi-level Goal Programming	229
	9.1	Problem Identification	229
	9.2	Solution Concepts	230
	9.3	Fuzzy Bi-level Goal-Programming Algorithm	241
	9.4	A Numerical Example and Experiments	242
		9.4.1 A Numerical Example	242
		9.4.2 Experiments and Evaluation	246
	9.5	Summary	247

Contents xiii

Par	t IV	Rule-set-	-based Bi-level Decision Making	
10	Rule	-Set-Base	d Bi-level Decision Making	251
	10.1	Problem	Identification	251
	10.2	Informa	tion Tables and Rule-Sets	252
		10.2.1	Information Tables	252
		10.2.2	Formulas and Rules	253
		10.2.3	Decision Rule Set Function	255
		10.2.4	Rule Trees	256
		10.2.5	Rules Comparison	258
	10.3	Rule-Se	t-Based Bi-level Decision Model	260
		10.3.1	Objectives	260
		10.3.2	Constraints	261
		10.3.3	Rule-Set-Based Bi-level Decision Model	261
	10.4		t-Based Bi-level Decision Modeling Approach	262
	10.5	Rule-Se	et-Based Bi-level Decision Solution Algorithms	264
		10.5.1	Concepts and Properties	264
		10.5.2	Rule-Based-Based Solution Algorithm	265
		10.5.3	Transformation-Based Solution Algorithm	268
	10.6	A Case	Study	273
		10.6.1	Problem Modeling	273
		10.6.2	Solution	27ϵ
	10.7	Experin	nents and Analysis	283
	10.8	Summa	ry	286
Par	1 V	Multi-lev	el Decision Support Systems and Applications	
11			l and Tri-level Decision Support Systems	289
	11.1	A Fuzz	y Bi-level Decision Support System	289
		11.1.1	System Configuration and Interfaces	290
		11.1.2	System Structure	29
		11.1.3	Linear Bi-level Decision Support Process	293
		11.1.4	Non-linear Bi-level Decision Support Process	302
	11.2	A Tri-le	evel Decision Support System	306
		11.2.1	System Configuration and Tri-level Decision	20.
			Support Process	306
		11.2.2	Detailed Operational Process	•
		_	and System Interface	309
	113	Summa	rs/	314

xiv Contents

12	Bi-level Programming for Competitive Strategic Bidding			
		nization in Electricity Markets	315	
	12.1	Background	315	
	12.2	Bidding Strategy Analysis in Competitive		
		Electricity Markets	316	
		12.2.1 Strategic Pricing Model for Power Plants	317	
		12.2.2 Generation Output Dispatch Model		
		for Market Operator	318	
	12.3	BLML Decision Model in Competitive Electricity Markets	319	
	12.4	A Case Study	320	
		12.4.1 Test Data	320	
		12.4.2 Experiment Results	321	
		12.4.3 Experiment Analysis	323	
	12.5	Summary	324	
13	Bi-le	vel Pricing and Replenishment in Supply Chains	325	
	13.1	Background	325	
	13.2	Case Study 1: Hi-tech Product Pricing and Replenishment		
		Strategy Making	326	
		13.2.1 Problem Formulation	326	
		13.2.2 Experiments	331	
	13.3	Case Study 2: Hi-tech Product Pricing and Replenishment		
		Strategy Making with Weekly Decline-Rates	332	
		13.3.1 Problem Formulation	332	
		13.3.2 Experiments	334	
	13.4	Summary	336	
14	Bi-le	vel Decision Making in Railway Transportation		
	Mana	agement	337	
	14.1	Case Study 1: Train Set Organization	337	
		14.1.1 Background	337	
		14.1.2 Problem Formulation	340	
		14.1.3 Experiments	342	
	14.2	Case Study 2: Railway Wagon Flow Management	344	
		14.2.1 Background	344	
		14.2.2 Problem Formulation	345	
		14.2.3 Experiments	355	
	14.3	Summary	356	
Ref	ference	es	357	