Contents

Public-Key Encryption

Encapsulation Mechanisms	3
On the Selective Opening Security of Practical Public-Key Encryption Schemes	27
How Secure is Deterministic Encryption?	52
E-Cash	
Divisible E-Cash Made Practical	77
Anonymous Transferable E-Cash	101
Cryptanalysis	
Collision of Random Walks and a Refined Analysis of Attacks on the Discrete Logarithm Problem	127
A Polynomial-Time Key-Recovery Attack on MQQ Cryptosystems Jean-Charles Faugère, Danilo Gligoroski, Ludovic Perret, Simona Samardjiska, and Enrico Thomae	150
A Polynomial-Time Attack on the BBCRS Scheme	175
Algebraic Cryptanalysis of a Quantum Money Scheme: The Noise-Free Case	194

Digital Signatures I

Digital Signatures from Strong RSA without Prime Generation David Cash, Rafael Dowsley, and Eike Kiltz	217
Short Signatures with Short Public Keys from Homomorphic Trapdoor Functions	236
Jacob Alperin-Sheriff	
Tightly-Secure Signatures from Chameleon Hash Functions Olivier Blazy, Saqib A. Kakvi, Eike Kiltz, and Jiaxin Pan	256
Password-Based Authentication	
Two-Server Password-Authenticated Secret Sharing UC-Secure Against Transient Corruptions	283
Adaptive Witness Encryption and Asymmetric Password-Based	
Cryptography	308
Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks Michel Abdalla, Fabrice Benhamouda, and David Pointcheval	332
Pairing-Based Cryptography	
Strongly-Optimal Structure Preserving Signatures from Type II Pairings: Synthesis and Lower Bounds	355
A Profitable Sub-prime Loan: Obtaining the Advantages of Composite Order in Prime-Order Bilinear Groups	377
Digital Signatures II	
Simpler Efficient Group Signatures from Lattices Phong Q. Nguyen, Jiang Zhang, and Zhenfeng Zhang	401
Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-Based San Ling, Khoa Nguyen, and Huaxiong Wang	427
Secure Efficient History-Hiding Append-Only Signatures in the Standard Model	450

Efficient Constructions	
One-Round Key Exchange with Strong Security: An Efficient and Generic Construction in the Standard Model	477
Additively Homomorphic UC Commitments with Optimal Amortized Overhead	495
Interactive Message-Locked Encryption and Secure Deduplication	516
Faster ECC over $\mathbb{F}_{2^{521}-1}$	539
Cryptography with Imperfect Keys	
Continuous Non-malleable Key Derivation and Its Application to Related-Key Security	557
A Tamper and Leakage Resilient von Neumann Architecture	579
Low Noise LPN: KDM Secure Public Key Encryption and Sample Amplification	604
Interactive Proofs	
Adaptive Proofs of Knowledge in the Random Oracle Model David Bernhard, Marc Fischlin, and Bogdan Warinschi	629
Making Sigma-Protocols Non-interactive Without Random Oracles Pyrros Chaidos and Jens Groth	650
Lattice-Based Cryptography	
Bootstrapping BGV Ciphertexts with a Wider Choice of p and q Emmanuela Orsini, Joop van de Pol, and Nigel P. Smart	673
Packing Messages and Optimizing Bootstrapping in GSW-FHE	699

XIII

Contents

Simple Lattice Trapdoor Sampling from a Broad Class of Distributions Vadim Lyubashevsky and Daniel Wichs	716
Identity-Based, Predicate, and Functional Encryption	
Simple Functional Encryption Schemes for Inner Products	733
Predicate Encryption for Multi-Dimensional Range Queries from Lattices Romain Gay, Pierrick Méaux, and Hoeteck Wee	752
On the Practical Security of Inner Product Functional Encryption Shashank Agrawal, Shweta Agrawal, Saikrishna Badrinarayanan, Abishek Kumarasubramanian, Manoj Prabhakaran, and Amit Sahai	777
Identity-Based Encryption with (almost) Tight Security in the Multi-instance, Multi-ciphertext Setting Dennis Hofheinz, Jessica Koch, and Christoph Striecks	799
Author Index	823