Content

S	umma	ıry		1		
Z	usamr	ment	fassung	3		
1	Introduction 5					
	1.1	Cor	orynebacterium glutamicum, a model organism of biotechnological relevance			
	1.2	Sm	all RNAs in bacteria	7		
	1.2	.1	Cis-encoded antisense RNAs	8		
	1.2	2	Trans-encoded antisense RNAs	10		
	1.2	3	sRNAs that modulate protein activity	12		
	1.3	The	e 6C RNA family	14		
	1.4	Ain	ns of this work	17		
2	Ma	ateria	als and Methods	19		
	2.1		ffers and antibiotics			
	2.2		Iture media			
	2.3		gonucleotides			
	2.4		cterial strains and plasmids			
	2.5		smid constructions			
	2.5	i.1	Construction of pk19mobsacB derivatives for the deletion of genes	27		
	2.5	i.2	Construction of pAN and pJC1 derivatives as expression plasmids for C. glutamicu	m 28		
	2.5	i.3	Construction of pUCBM21 derivatives as expression plasmids for E. coli	28		
	2.6	Cul	ltivation of bacteria	28		
	2.6	3.1	Cultivation of E. coli	28		
	2.6	3.2	Cultivation of C. glutamicum	29		
	2.6	3.3	Maintenance of bacteria	29		
	2.6	5.4	Determination of bacterial growth	30		
	2.6	5.5	Determination of the cell dry weight (CDW)	30		
	2.6	6.6	Cultivation in microtiter scale in the BioLector system	30		
	2.7	Мо	lecular biology methods	31		
	2.7	7.1	Isolation of nucleic acid	31		
	2.7	' .2	Nucleic acid gel electrophoresis	32		
	2.7	' .3	Determination of nucleic acid concentrations	33		
	2.7	′.4	Polymerase Chain Reaction (PCR)	33		
	2.7	⁷ .5	Purification of DNA fragments	34		
	2.7	⁷ .6	Recombinant DNA techniques	34		
	27	7 7	DNA seguencina	35		

2.	7.8	Generation and transformation of competent E. coli	35
2.	7.9	Generation and transformation of competent C. glutamicum	36
2.	7.10	Chromosomal gene replacement using the pK19mobsacB system	36
2.	7.11	RNA in vitro transcription	37
2.	7.12	RNA purification by phenol chloroform extraction	37
2.	7.13	Ethanol precipitation of RNA	38
2.	7.14	Northern blot analysis	38
2.	7.15	Quantification of 6C RNA molecules per cell	39
2.	7.16	RNA-protein interaction studies	39
2.8	Glo	bal gene expression analysis using DNA microarrays	41
2.	.8.1	Synthesis and labeling of cDNA	41
2.	.8.2	C. glutamicum DNA microarray hybridization	42
2.	.8.3	DNA microarray fluorescence signal measurement and data analysis	43
2.9	Pro	tein biochemical methods	44
2.	.9.1	Cell disruption methods	44
2.	.9.2	Determination of protein concentrations	44
2.	.9.3	Protein precipitation	
2.	.9.4	SDS polyacrylamide gel electrophoresis	45
2.	.9.5	Protein overexpression and purification	45
2.	.9.6	Concentration and desalting of proteins	47
2.	.9.7	DNA-protein interaction studies	47
2.	.9.8	PGK _{Cg} enzyme activity assays	48
2.10	MA	LDI ToF mass spectrometry	49
2.11	Mic	roscopy techniques	50
2.12	Q ua	antification of metabolites	50
2.	.12.1	Quantification of glucose and organic acids in culture supernatants	50
2.	.12.2	Quantification of amino acids	51
_	.		E ?
		S CORNA and the commercian in Condutors in con-	
3.1		6C RNA and its expression in C. glutamicum The 6C RNA is very stable	
	.1.1	•	
-	.1.2		
	.1.3	Putative transcriptional regulators of the 6C RNA	
3.2		nstruction and characterization of 6C RNA deletion mutants	
	.2.1	Transcriptome analysis of the ∆6C mutant	
	.2.2	Screening for a phenotype of the Δ6C RNA mutant	
3.3		perties of the Δ6CiP mutant in the presence of mitomycin C (MMC)	
	.3.1	Growth and cell shape of Δ6CiP mutant cultivated with MMC	
	3.3.2	Transcriptome analysis of the \(\Delta \text{CiP} \) mutant cultivated with MMC	
	3.3.3	The SOS response is altered in the Δ6CiP mutant	
3	.3.4	Complementation of the \(\Delta 6CiP \) mutant MMC-phenotype	/١

	3.4	Overexpression of the 6C RNA in C. glutamicum pJC1-6C (+/-MMC)	78
3.4.1		1 Growth and cell shape of C. glutamicum pJC1-6C (+/-MMC)	78
	3.4.	2 Transcriptome analysis of C. glutamicum pJC1-6C (+/- MMC)	. 80
	3.5	Putative mRNA targets of the 6C RNA	87
	3.5.	1 Deletion and Overexpression of whcD	87
	3.5.	2 Characterization of the downstream genes of the 6C RNA	91
	3.6	Putative protein interaction partners of the 6C RNA	92
	3.7	Effect of 6C RNA on amino acid production in C. glutamicum	95
4	Dis	cussion	.99
•	4.1	The 6C RNA is an abundant and very stable sRNA in C. glutamicum	
	4.2	The potential role of the 6C RNA under SOS response-inducing conditions	
	4.3	Potential mRNA targets of the 6C RNA	
	4.3.	-	
	4.3.		
	4.4	3-phosphoglycerate kinase – a candidate protein interaction partner of the 6C RNA	
5	Ref	ferences1	115
6	App	Appendix12	
	6.1	Number of 6C RNA molecules per cell	127
	6.2	Putative transcriptional regulators of the 6C RNA	128
	6.3	The SOS response is altered in the Δ 6CiP mutant	130
	6.4	Characterization of the downstream genes of the 6C RNA	132
	6.5	Deletion and overexpression of whcD	132
	6.6	Effect of 6C RNA on amino acid production in C. glutamicum	134
	6.7	Transcriptome analysis	135