Contents

1	Intro	duction		1		
2	Mechanical Vibratory Systems with Hierarchical Structure.					
	Simulation and Calculation Methods					
	2.1	Introdu	uction	7		
	2.2	Models of Mechanical Systems with Lumped Parameters		8		
		2.2.1	Coefficients of Static Stiffness and Compliance	9		
		2.2.2	Static Stiffness Coefficients for a Beam	11		
	2.3		tion of Models with Lumped Parameters	13		
	2.4	Coefficients of Dynamic Stiffness and Compliance		15		
		2.4.1	Coefficients of Dynamic Stiffness	16		
		2.4.2	Coefficients of Dynamic Compliance	17		
	2.5		sion Reduction of Dynamic Compliance Matrix	21		
	2.6		nining Dynamic Compliance Using Experimental Methods	22		
	2.7	Fundamentals of Finite-Element Method. Analytical Approaches		25		
		2.7.1	Stiffness Matrix for Beam Finite Element	26		
		2.7.2	Stiffness Matrix for Assembled System	28		
		2.7.3	Boundary Conditions and Various Ways			
			of Subsystems Connecting	29		
	2.8		nposition Methods Taking into Account Weak			
		Interactions Between Subsystems				
		2.8.1	Coefficients of Dynamic Interactions	31		
		2.8.2	Decomposition by Partition into Independent			
			Substructures	34		
		2.8.3	Other Decomposition Methods	36		
		2.8.4	Coefficients of Weak Interaction and Criteria			
			for III – Conditions of Matrices	37		
Par	t I	Syster	ns with Lumped Parameters			
3	Vibrations of Regular Systems with Periodic Structure		Regular Systems with Periodic Structure	41		
	3.1		action: Some Specific Features of Mechanical Systems	41		
	3.2 Wave Approach at Vibrations of Mechanical Systems		•			
			eriodic Structure	42		

viii Contents

	3.3	Vibratio	ons of Frames with Periodic Structure	47
		3.3.1	Combining Finite Elements Method	
			and Dispersion Equation	47
		3.3.2	Vibrations of Grate Frames	50
	3.4	Dynam	ic Properties of Laminar Systems	
		with Sp	parsely Positioned Laminar Ribbing	52
		3.4.1	Dispersion Equation for Ribbed Laminar	
			Systems: Conditions for Possibility of Continualization	53
		3.4.2	Vibrations of a Single-Section Lamina with	
		*	Laminar Ribbing: Comparison of Discrete and	
			Continuous Models	58
	3.5	Finite-I	Element Models for Beam Systems: Comparison	
		with D	istributed Parameters Models	61
		3.5.1	Dispersion Equation for FE-Model of Beam	61
		3.5.2	Comparing Models with Distributed Parameters	
			and Finite Elements Models at Different FE-Mesh	64
		3.5.3	Beam Systems	68
	3.6	Hierard	thy of Mathematical Models: Superposition	
			e Motions	70
	3.7		ons of Self-Similar Structures in Mechanics	73
		3.7.1	Self-Similar Structures: Basic Concepts	73
		3.7.2	Vibrations in Self-Similar Mechanical	
			Structures: Dispersion Equation	74
4	Viba	utiona al	Systems with Geometric Symmetry.	
4			etrical Systems	79
	4.1		ection	79 79
	4.2		nformation about Theory of Groups Representation	80
	4.2	4.2.1	Basic Concepts and Definitions	80
		4.2.1		83
	4.3		Examples of Applying Groups Representation Theory .	0.3
	4.5	Applying Theory of Group Representation to Mechanical Systems: Generalized Projective Operators		
			metry	86
		4.3.1	Features of Mechanical Systems with	00
		4.5.1		86
		4.3.2	Symmetric Structure	80
		4.5.2		0.7
	4.4	Vibrati	Generalized Modes	87
	4.4	4.4.1	ons of Frames with Cyclic Symmetry	89
		4.4.1	Stiffness and Inertia Matrices	89
		4.4.2	Projective Operators for Frame: Generalized Modes	91
	4.5		Analysis of Forced Vibrations	95
	4.3	4.5.1	of FE-Mesh on Matrix Structure	95
	4.6		The Square Frame: Generalized Modes	96
	4.0		solation of Body on Symmetrical Frame:	0.0
		viorati	ons Interaction	98

Contents ix

	4.7	Quasi-symmetrical Systems	100
		4.7.1 Vibrations Interaction at Slight Asymmetry	100
		4.7.2 Quasi-symmetrical Systems: Free Vibrations	102
		4.7.3 Quasi-symmetrical Systems: Forced Vibrations	104
	4.8	Hierarchy of Symmetries: Multiplication of Symmetries	105
	4.9	Periodic Systems Consisting from Symmetrical Elements	107
	4.10	Generalized Modes in Planetary Reduction Gear	
		due to Its Symmetry	108
		4.10.1 Dynamic Model of Planetary Reduction Gear	108
		4.10.2 Generalized Normal Modes in Planetary	
		Reduction Gear: Decomposition of Stiffness Matrix	109
		4.10.3 Free Vibrations	111
		4.10.4 Forced Vibrations due to Slight Error in Engagement .	112
		4.10.5 Vibrations Interaction at Violation of Symmetry	113
•		Trois Tionations interaction at Troiation of Symmetry	
Par	t II	Systems with Distributed Parameters	
5	Basic	Equations and Numerical Methods	117
	5.1	Elementary Cells: Connectedness	117
	5.2	Fundamental Matrices for Systems with Regular Structure	118
		5.2.1 Matrices of Dynamic Compliance and Dynamic Stiffness	118
		5.2.2 Mixed Dynamic Matrix	119
		5.2.3 Transition Matrix	121
	5.3	Finite Difference Equations	122
	5.4	Mixed Dynamic Matrix as Finite Difference Equation	124
	5.5	Transmission Matrix	125
6	Syste	ms with Periodic Structure	127
	6.1	Introduction	127
	6.2	Dynamic Compliances and Stiffness for Systems	
		with Periodic Structure	129
	6.3	Dynamic Compliances of Single-Connectedness System	131
	6.4	Transition Matrix	135
	6.5	Forced Vibrations	136
	6.6	Vibrations of Blades Package	137
	6.7	Collective Vibrations of Blades	139
7	Syste	ms with Cyclic Symmetry	141
	7.1	Natural Frequencies and Normal Modes for Systems	
		with Cyclic Symmetry	141
		7.1.1 Natural Frequencies	141
		7.1.2 Normal Modes	144
	7.2	Vibrations of Blades System	144
		7.2.1 Different Designs of Blades Connecting	144
		7.2.2 Natural Frequencies for Blades System	145
		7.2.3 Normal Modes for Blades System	146

x Contents

	7.3	Numerical and Experimental Results for Blades with Shroud	147
		7.3.1 Free Ring Connection	147
		7.3.2 Blades with Paired-Ring Shroud	149
		7.3.3 Blades Shrouded by Shelves	151
8	Syste	ms with Reflection Symmetry Elements	155
	8.1	Reflection Symmetry Element and Its Dynamic Characteristics.	155
		8.1.1 Dynamic Stiffness and Compliance Matrices	
		for Reflection Symmetry Element	157
		8.1.2 Mixed Matrix for Reflection Symmetry Element	158
	8.2	Finite Differences Equations	161
	8.3	Special Types of Boundary Conditions	164
		8.3.1 Nonclosed Systems	164
		8.3.2 Closed Systems	167
	8.4	Filtering Properties of System with Reflection Symmetry Elements	169
	8.5	Numerical Examples	170
		8.5.1 Single-Connectedness Systems	170
		8.5.2 Two-Connectedness Systems	176
		8.5.3 Three-Connectedness System	179
	8.6	Systems Consisting of Skew-Symmetric	
		(Antisymmetric) Elements	182
9	Self-S	Similar Structures	187
	9.1	Introductory Part: Examples of Self-Similar Mechanical Structures	187
	9.2	Dynamic Compliances of Self-Similar Systems	188
	9.3	Vibrations of Self-Similar Systems: Numerical Examples	190
	9.4	Transition Matrix	191
	9.5	Self-Similar Systems with Similar Matrix of Dynamic Compliance	193
	9.6	Vibrations of Self-Similar Shaft with Disks	194
	9.7	Vibrations of Self-Similar Drum-Type Rotor	196
10	Vibra	tions of Rotor Systems with Periodic Structure	201
	10.1	Rotor Systems with Periodic Structure with Disks	201
	10.2	Rotor with Arbitrary Boundary Conditions; Natural	
		Frequencies and Normal Modes	205
11	Vibra	itions of Regular Ribbed Cylindrical Shells	209
	11.1		209
	11.2	Dynamic Stiffness and Transition Matrix for Closed	
		· ·	211
	11.3	· ·	214
	11.4	Dynamic Stiffness and Transition Matrices for Circular	
		_1	215
	11.5	Vibrations of Cylindrical Shell with Ring Ribbing	
			217
	11.6	Vibrations of Cylindrical Shell with Longitudinal	
		Ribbing of Nonsymmetric Profile	221

Contents xi

11.6.1 Dynamic Stiffness and Transition Matrices for Longitudinal Stiffening Ribs	222
11.6.2 Numerical Calculation of Shell with Longitudinal Ribbing	
Appendix A Stiffness and Inertia Matrices for a Ramified System Consisting of Rigid Bodies Connected by Beam Elements	225
Appendix B Stiffness Matrix for Spatial Finite Element	231
Appendix C Stiffness Matrix Formation Algorithm for a Beam System in Analytical Form	233
Appendix D Stiffness Matrices for a Planetary Reduction Gear Subsystems	235
References	237
Index	243