
Inhalt 

Vorwort 13 

1 Einführung n 

1.1 Einleitung 17 

1.2 Entstehung und Historie 18 

1.3 Einsatzgebiete von JavaScript 19 

1.3.1 Clientseitige JavaScript-Webanwendungen 19 

1.3.2 Serverseitige JavaScript-Anwendungen 20 

1.3.3 Desktop-JavaScript-Anwendungen 21 

1.3.4 Mobile JavaScript-Anwendungen 21 

1.3.5 Embedded-Anwendungen 21 

1.3.6 Popularität von JavaScript 21 

1.4 Laufzeitumgebungen 22 

1.4.1 V8 22 

1.4.2 SpiderMonkey/TraceMonkey/JägerMonkey/OdinMonkey 22 

1.4.3 JavaScriptCore 23 

1.4.4 Rhino 23 

1.4.5 Nashorn 23 

1.4.6 Dyn .js 23 

1.4.7 Auswahl der richtigen Laufzeitumgebung 24 

1.4.8 Interpreter und Just-in-time-Compiler 24 

1.5 Entwicklungsumgebungen 25 

1.5.1 Cloud9 25 

1.5.2 Aptana Studio 3 26 

1.5.3 SublimeText2 27 

1.5.4 NetBeans 27 

1.5.5 IntelliJ WebStorm 28 

1.5.6 JSFiddle, JSBin und Codepen 29 

1.5.7 Fazit 30 

1.6 Debugging-Tools 30 

1.6.1 Das console-Objekt 30 

1.6.2 Browser 32 

1.6.3 node-inspector 34 

5 

http://d-nb.info/1062929810

http://d-nb.info/1062929810


1.7 Einführung in die Sprache 34 
1.7.1 Statische Typisierung vs. dynamische Typisierung 34 
1.7.2 Datentypen und Werte 35 
1.7.3 Variablen und Konstanten 44 
1.7.4 Funktionen 45 
1.7.5 Operatoren 49 
1.7.6 Kontrollstrukturen und Schleifen 53 
1.7.7 Fehlerbehandlung 55 
1.7.8 Sonstiges Wissenswertes 57 

1.8 Zusammenfassung und Ausblick 58 

2 Funktionen und funktionale Aspekte 6i 

2.1 Die Besonderheiten von Funktionen in JavaScript 61 
2.1.1 Funktionen sind First-Class-Objekte 62 
2.1.2 Funktionen haben einen Kontext 70 
2.1.3 Funktionen definieren einen Sichtbarkeitsbereich 73 
2.1.4 Alternativen zum Überladen von Methoden 77 
2.1.5 Funktionen als Konstruktorfunktionen 80 

2.2 Standardmethoden jeder Funktion 80 
2 2.1 Objekte binden mit der Methode »bind()« 81 
2.2.2 Funktionen aufrufen über die Methode »call()« 83 
2.2.3 Funktionen aufrufen über die Methode »applyO« 84 

2.3 Einführung in die funktionale Programmierung 85 
2.3.1 Eigenschaften funktionaler Programmierung 85 
2.3.2 Unterschied zur objektorientierten Programmierung 86 
2.3.3 Unterschied zur imperativen Programmierung 87 
2.3.4 Funktionale Programmiersprachen und JavaScript 87 

2.4 Von der imperativen Programmierung zur funktionalen 
Programmierung 87 
2.4.1 Iterieren mit der Methode »forEach()« 88 
2.4.2 Werte abbilden mit der Methode »mapO« 89 
2.4.3 Werte filtern mit der Methode »filter()« 90 
2.4.4 Einen Ergebniswert ermitteln mit der Methode »reduce()« 91 
2.4.5 Kombination der verschiedenen Methoden 93 

2.5 Funktionale Techniken und Entwurfsmuster 94 

2.5.1 Komposition 94 

6 



2.5.2 Rekursion 97 

2.5.3 Closures 97 

2.5.4 Partielle Auswertung 100 

2.5.5 Currying 107 

2.5.6 Das IIFE-Entwurfsmuster 109 

2.5.7 Das Callback-Entwurfsmuster 110 

2.5.8 Self-Defining Functions 117 

2.6 Zusammenfassung und Ausblick 119 

3 Objektorientierte Programmierung 
mit JavaScript 121 

3.1 Objekte 121 

3.1.1 Arten von Objekten 121 

3.1.2 Objekte erstellen 122 

3.2 Prototypen 133 

3.3 Vererbung 136 

3.3.1 Prototypische Vererbung 137 

3.3.2 Pseudoklassische Vererbung 145 

3.3.3 Kopierende Vererbung 150 

3.4 Datenkapselung 152 

3.4.1 Öffentliche Eigenschaften 152 

3.4.2 Private Eigenschaften 153 

3.4.3 Privilegierte öffentliche Methoden 153 

3.4.4 Nichtprivilegierte öffentliche Methoden 154 
3.4.5 Private Methoden 156 

3.5 Emulieren von statischen Eigenschaften und statischen Methoden 157 

3.6 Emulieren von Interfaces 159 

3.6.1 Interfaces emulieren mit Attribute Checking 160 

3.6.2 Interfaces emulieren mit Duck Typing 161 

3.7 Emulieren von Namespaces 162 

3.8 Emulieren von Modulen 164 

3.8.1 Das klassische Module-Entwurfsmuster 164 

3.8.2 Das Revealing-Module-Entwurfsmuster 165 

3.8.3 Importieren von Modulen 166 

7 



3.8.4 Module Augmentation 168 
3.8.5 AMD, CommonJS und ECMAScript-6-Module 169 

3.9 Zusammenfassung und Ausblick 171 

4 ECMAScript 6 173 

4.1 Einführung 173 

4.2 Block-Scope und Konstanten 175 
4.2.1 Block-Scope 175 
4.2.2 Konstanten 180 

4.3 Striktere Trennung zwischen Funktionen und Methoden 183 
4.3.1 Arrow-Funktionen 184 
4.3.2 Definition von Methoden 186 

4.4 Flexiblerer Umgang mit Funktionsparametern 188 
4.4.1 Beliebige Anzahl an Funktionsparametern 188 
4.4.2 Abbilden von Arrays auf Funktionsparameter 190 
4.4.3 Standardwerte für Funktionsparameter 191 
4.4.4 Benannte Parameter 194 

4.5 Mehrfachzuweisungen über Destructuring 196 
4.5.1 Array-Destructuring 196 
4.5.2 Objekt-Destructuring 200 

4.6 Iteratoren und Generatoren 203 
4.6.1 Iteratoren 204 
4.6.2 Generatorfunktionen und Generatoren 206 

4.7 Promises 209 

4.8 Proxies 212 
.4.8.1 Proxies in ES6 212 
4.8.2 Emulieren von Proxies in ES5 214 
4.8.3 Anwendungsbeispiel: Proxy als Profiler 215 
4.8.4 Anwendungsbeispiel: Proxy zur Validierung 215 

4.9 Collections 216 
4.9.1 Maps 216 
4.9.2 Weak-Maps 218 
4.9.3 Sets 219 
4.9.4 Weak-Sets 220 

8 



4.10 Module 220 
4.10.1 Module exportieren 221 
4.10.2 Module importieren 222 

4.11 Klassen 223 
4.11.1 Definition von Klassen 223 
4.11.2 Vererbung 224 

4.12 Neue Methoden der Standardobjekte 226 
4.12.1 Neue Methoden in »Object« 226 
4.12.2 Neue Methoden in »String« 227 
4.12.3 Neue Methoden in »Array« 230 
4.12.4 Neue Methoden in »RegExp«, »Number« und »Math« 233 

4.13 Sonstiges neue Features 235 

4.13.1 Template-Strings 235 
4.13.2 Symbole 238 
4.13.3 for-of-Schleife 238 

4.14 Zusammenfassung und Ausblick 239 

5 Der Entwicklungsprozess 241 

5.1 Einleitung 241 

5.2 Styleguides und Code Conventions 244 

5.3 Codequalität 251 
5.3.1 JSLint 251 
5.3.2 JSHint 252 
5.3.3 ESLint 253 
5.3.4 JSBeautifier 255 
5.3.5 Google Closure Linter 256 
5.3.6 Fazit 257 

5.4 Dokumentation 257 
5.4.1 JSDoc 3 257 
5.4.2 YUIDoc 259 
5.4.3 JSDuck 5 260 
5.4.4 Unterstützte Tags 261 
5.4.5 Fazit 263 

5.5 Konkatenation, Minification und Obfuscation 263 

5.5.1 YUI Compressor 265 

9 



5.5.2 Google Closure Compiler 266 
5.5.3 UglifyJS 2 267 
5.5.4 Fazit 270 

5.6 Package Management 271 
5.6.1 Backend Package Management mit NPM 272 
5.6.2 Frontend Package Management mit Bower 279 
5.6.3 Fazit 285 

5.7 Building 285 
5.7.1 Grünt 286 
5.7.2 GulpJS 289 
5.7.3 Fazit 291 

5.8 Scaffolding 291 
5.8.1 Yeoman 292 
5.8.2 Lineman 297 

5.9 Zusammenfassung und Ausblick 299 

6 JavaScript-Anwendungen testen 301 

6.1 Testgetriebene Entwicklung 301 
6.1.1 Grundlagen und Begriffsdefinition 301 
6.1.2 Testgetriebene Entwicklung in JavaScript 304 
6.1.3 QUnit 305 
6.1.4 mocha 311 
6.1.5 Integration in Build-Tools 320 

6.2 Test-Doubles 324 
6.2.1 SinonJS 325 
6.2.2 Spies 325 
6.2.3 Stubs 331 
6.2.4 Mock-Objekte 334 

6.3 Testabdeckung 336 
6.3.1 Einführung 337 
6.3.2 Blanketjs 337 

6.4 DOM-Tests 341 

6.5 Funktionstests 344 
6.5.1 PhantomJS 344 
6.5.2 CasperJS 347 

6.6 Zusammenfassung und Ausblick 350 

10 



7 Die Entwurfsmuster der Gang of Four 353 

7.1 Einführung 353 

7.2 Erzeugungsmuster 354 
7.2.1 Objekte an einer zentralen Stelle erzeugen 

(Abstract Factory/Factory Method) 355 
7.2.2 Nur ein Objekt von einem Typ erstellen (Singleton) 358 
7.2.3 Erstellen von komplexen Objekten (Builder) 360 
7.2.4 Ahnliche Objekte erstellen (Prototype) 363 

7.3 Strukturmuster 366 
7.3.1 Die Schnittstelle anpassen (Adapter) 366 
7.3.2 Abstraktion und Implementierung entkoppeln (Bridge) 370 
7.3.3 Objekte in Baumstrukturen anordnen (Composite) 371 
7.3.4 Eigenschaften unter Objekten teilen (Flyweight) 375 
7.3.5 Objekte mit zusätzlichen Funktionalitäten 

ausstatten (Decorator) 379 
7.3.6 Einheitliche Schnittstelle für mehrere Schnittstellen (Facade) 381 
7.3.7 Den Zugriff auf Objekte abfangen (Proxy) 383 

7.4 Verhaltensmuster 385 
7.4.1 Uber Datenstrukturen iterieren (Iterator) 385 
7.4.2 Den Zugriff auf Objekte beobachten (Observer) 388 
7.4.3 Eine Vorlage für einen Algorithmus definieren 

(Template Method) 393 
7.4.4 Funktionen als Parameter übergeben (Command) 396 
7.4.5 Algorithmen als Funktionen beschreiben (Strategy) 400 
7.4.6 Das Zusammenspiel mehrerer Objekte koordinieren (Mediator) 403 
7.4.7 Den Zustand eines Objekts speichern (Memento) 404 
7.4.8 Operationen auf Objekten von Objekten entkoppeln (Visitor) 406 
7.4.9 Das Verhalten eines Objekts abhängig vom 

Zustand ändern (State) 411 
7.4.10 Eine Repräsentation für die Grammatik einer Sprache definieren 

(Interpreter) 414 
7.4.11 Anfragen nach Zuständigkeit bearbeiten (Chain of Responsibility)... 415 

7.5 Zusammenfassung und Ausblick 418 

11 



8 Architekturmuster und Konzepte moderner 
JavaScript-Webframeworks 423 

8.1 Model View Controller 423 

8.2 Model View Presenter 424 

8.3 MVC und MVP in Webanwendungen 425 
8.3.1 Klassische Webanwendungen 425 
8.3.2 Moderne Webanwendungen 427 

8.4 Model View ViewModel 432 
8.4.1 MWM am Beispiel von Knockout.js 434 
8.4.2 Kombination von MVC und MWM am Beispiel von AngularJS 437 

8.5 Routing 440 
8.5.1 Routing am Beispiel von AngularJS 441 
8.5.2 Routing am Beispiel von Backbone.js 442 

8.6 Zusammenfassung und Ausblick 443 

Index 445 

12 


