Contents

1		Basic Features of Viscopiasticity	I			
	1.1	Bingham Fluid at Rest in a Channel	1			
	1.2	Sign of the Shear Stress	2			
	1.3	Critical Pressure Drop and the Constitutive Relation	3			
	1.4	The Solution	5			
	1.5	Flow Rate	6			
	1.6	Inherent Nonlinearity	6			
	1.7	Non-dimensionalisation	7			
	1.8	The Buckingham Equation	9			
	1.9	Free Boundary Problems	10			
	1.10	The Minimiser and the Variational Inequality	14			
	1.11	Effects of Wall Slip	16			
	1.12	Experimental Support	18			
	1.13	Summary	20			
	Refer	rences	20			
2	Kinematics of Fluid Flow					
	2.1	Kinematical Preliminaries	24			
	2.2	Relation Between the Velocity and Deformation Gradients	26			
	2.3	Rigid Motion	27			
	2.4	Polar Decomposition, Spin and Stretching	28			
	2.5	Steady Velocity Fields and Their Rivlin-Ericksen Tensors	30			
	Appendix					
		rences	34			
3	Fund	Fundamental Equations				
	3.1	Conservation of Mass	36			
	3.2	Cauchy's First Law	37			
	3.3	Cauchy's Second Law	39			

xıiı

x₁v Contents

	3.4	Conservation of Energy	11			
	3.5	Control Volume and Control Surface	13			
			15			
			16			
	KCICI	onco				
4	Constitutive Equations					
	4.1		18			
			18			
	4.2		51			
		£ .	54			
	4.3	•	54			
	4.4	• · · · · · · · · · · · · · · · · · · ·	56			
	4.5		58			
	4.6		59			
	7.0		50			
		······	52			
			53			
	Dofo		52			
	Kele	icinces	-ر			
5	Anal	Analytic Solutions: Steady Flows				
	5.1	Simple Shearing Flow	56			
	5.2		66			
	5.3	Flow Down an Inclined Plane	66			
	5.4	Flow in a Pipe of Circular Cross-Section	68			
		•	7			
	5.5		72			
	5.6		76			
	5.7		79			
	5.8		83			
	5.9	<u>.</u>	83			
	3.7		83			
			8:			
	Refe		80			
	Roio		٠.			
6	Ana		8			
	6.1		8			
		6.1.1 The Solution	9(
		6.1.2 Approximate Solution	90			
			98			
			98			
	6.2		99			
	6.3		0(
		6.3.1 An Initial Value Problem				
			o O			

Contents

		6.3.3	Hadamard Lemma and Unsteady Shearing				
			Flows in Viscoplastic Fluids	104			
		6.3.4	Implications of the Continuity of $\partial \sigma / \partial y$				
			at the Yield Surface	107			
		6.3.5	Extensions to Other Shearing Flows	107			
		6.3.6	Open Ended Problems	109			
	Refer	ences		110			
7	Anal		pproximation Techniques	113			
	7.1		ubrication Paradox	114			
	7.2	Steady	Flow in a Wavy Channel—The Periodic Case	116			
		7.2.1	Zeroth Order Solution	118			
		7.2.2	First Order Corrections	119			
		7.2.3	Breaking the Unyielded Plug	121			
	7.3	Hele-S	Shaw Flow Problems	121			
		7.3.1	The Viscometric Fluidity Function	123			
		7.3.2	Papanastasiou Model	124			
		7.3.3	The Symmetric Case	126			
		7.3.4	The Average Velocity Field				
			in the Symmetric Case	126			
		7.3.5	Hele-Shaw Flow Equations	128			
		7.3.6	The Asymmetric Case	129			
	7.4	Linear	ised Stability Analysis	132			
	7.5	Summ	ary	137			
	Refe	rences		137			
8	Variational Principles and Variational Inequalities						
	8.1 Minimum and Maximum Principles for Incompressible						
		Viscor	plastic Fluids	140			
		8.1.1	Basic Definitions and Principle of Virtual Power	140			
		8.1.2	The Velocity and Stress Functionals	142			
		8.1.3	Proofs of the Theorems	145			
		8.1.4	Equality of $\Phi(\mathbf{u})$ and $\Psi(\mathbf{T})$	148			
		8.1.5	Shear Rate Dependent Yield Stress	149			
		8.1.6	Steady Flow in a Pipe of Uniform Cross-Section	149			
	8.2	Virtua	l Power and the Basic Inequality for Incompressible				
			plastic Fluids	150			
		8.2.1	A Point-Wise Inequality: Isochoric Velocity Fields	150			
		8.2.2	The Integral Inequality	152			
	8.3	A Ger	neral Energy Balance Equation for Viscoplastic Fluids	154			
	8.4	Fundamental Inequality: Non-isochoric Trial					
			ity Fields	155			
			-				

xvi Contents

	8.5	Variational Principles and Fundamental Inequality					
			Presence of Wall Slip	156			
	8.6	Conve	x Analysis and Its Applications	158			
		8.6.1	The Direct Method	159			
		8.6.2	Convex Set and Convex Functionals	161			
		8.6.3	Existence and Uniqueness	164			
		8.6.4	Variational Inequality	165			
		8.6.5	Equivalence of the Minimiser and the Solution				
			of the Variational Inequality	166			
	8.7	Equiva	lence of the Solution of the Variational Inequality				
		and the	Equations of Motion	168			
	8.8	Special	Cases of the Variational Inequality	170			
		8.8.1	Flows with Zero Stress Power Difference	170			
		8.8.2	Flows with Non-zero Stress Power Difference	171			
		8.8.3	The Trilinear Functional Involving				
			Acceleration Terms	173			
	8.9	Viscop	lasticity Constraint Tensor: The Final Equivalence	175			
	8.10	The Ba	asic Inequality for Compressible Viscoplastic Fluids	176			
	Refer	ences		180			
9	Ener	Energy Methods in Action: Equality, Inequality and Stability					
	9.1		Flow in a Pipe of Arbitrary Cross-Section	181			
		9.1.1	The Minimum Pressure Drop per Unit Length				
			to Initiate a Steady Flow	182			
		9.1.2	Existence of Stagnant Zones	189			
		9.1.3	Bounds on the Magnitude of the Core				
			and Its Maximum Velocity	192			
	9.2	Static 1	Bubbles in Viscoplastic Fluids	193			
		9.2.1	Critical Value of the Bingham Number				
			to Prevent Bubble Motion	196			
		9.2.2	Critical Value from Stress Maximisation	197			
		9.2.3	A Condition for a Bubble to Move: An Upper				
			Bound for the Bingham Number	199			
	9.3	Motion	ns of Rigid Bodies in Viscoplastic Fluids	201			
	9.4	Initiati	on and Cessation of Unsteady Shearing Flows	207			
		9.4.1	The Approach to the Steady State	207			
		9.4.2	The Proof of the Energy Inequality	208			
		9.4.3	Cessation of the Steady Flow in a Channel	209			
		9.4.4	Cessation of Steady Simple Shear Flow	211			
		9.4.5	Cessation of Steady Flow in a Pipe	212			
		9.4.6	Cessation of Steady Couette Flow	213			
		0.47	Effects of Well Slip	214			

xvi

	9.5	Nonline	ear Stability Analysis	217
		9.5.1	Dissipation Terms	219
		9.5.2	Global Stability Bounds	220
		9.5.3	Conditional Stability	221
	Refer	ences		223
10	Num	erical M	odelling	225
	10.1		nted Lagrangian Methods: Finite Dimensional Case	226
	10.2	Augme	nted Lagrangian Methods for Bingham Fluids	230
		10.2.1	Optimality Conditions of the Augmented	
			Lagrangian Functional	232
		10.2.2	More General Problems	234
	10.3	Operato	or-Splitting Method for Thermally Driven Flows	235
		10.3.1	The Flow Problem and Mathematical Formulation	236
		10.3.2	Non-dimensionalisation	237
		10.3.3	Numerical Procedure	240
		10.3.4	Discussion of the Results	242
	10.4	.4 Compressibility Effects: Numerical Experiments		250
		10.4.1	Operator-Splitting Methods: Compressible Viscous	
			Fluids	250
		10.4.2	Compressible Viscoplastic Fluids: Isothermal Case	255
		10.4.3	Operator-Splitting Method	258
	10.5	Flow in	n a Cavity: Weakly Compressible Fluid	260
	10.6		rised Models	267
	Refer	_		269
Ind	ex			271