Contents

	Hydi	rogen Bonding Motifs: New Progresses	1
	Dan-	Wei Zhang, Hui Wang and Zhan-Ting Li	
	1.1	Hydrogen Bonding: The Basic Aspects	1
		1.1.1 Definition	1
		1.1.2 Hydrogen Bonding Donors and Acceptors	2
		1.1.3 The Strength of the Hydrogen Bond	3
		1.1.4 Hydrogen Bonding Formed by a Single Functional	
		Group	5
	1.2	Intramolecular Hydrogen Bonding	13
		1.2.1 The O-H···X Hydrogen Bonding	13
		1.2.2 The N-H···X Hydrogen Bonding	14
	1.3	Intermolecular Hydrogen Bonding	24
		1.3.1 Double Hydrogen Bonding	24
		1.3.2 Triple Hydrogen Bonding	25
		1.3.3 Quadruple Hydrogen Bonding	27
	1.4	Conclusion	33
	Refe	rences	34
2	Und	erstanding of Noncovalent Interactions Involving Organic	
	Fluo	rine	37
	Piyu	sh Panini and Deepak Chopra	
	2.1	Introduction	37
		2.1.1 Why Fluorine Is So Special?	39
	2.2	Debate on Participation of Fluorine as a Hydrogen Bond	
		Donor: Overview of the Weak X-H···F-C; $X = N$, O, C	
		Hydrogen Bond	40
	2.3	Inputs from Other Interactions Involving Organic Fluorine	53
		2.3.1 Insight into Halogen–Halogen Interactions Involving	
		Fluorine	53

viii Contents

		2.3.2	Insights into Halogen Bond Formation Involving Fluorine (C–F···X; $X = \text{Halogen}, N, O, S$)	57
	2.4	Conclu	sions	61
				62
				٠.
3			onding in Supramolecular Crystal Engineering Wang and Qi-Yu Zheng	69
	3.1		action	69
	3.2		I Engineering Strategies	71
		3.2.1	Supramolecular Synthons and Retrosynthesis	71
		3.2.2	Reticular Synthesis	72
	3.3	Hydro	gen Bonding	73
		3.3.1	Definition and Scopes	73
		3.3.2	Description of Hydrogen Bonding Motifs:	
			The Graph Sets	74
		3.3.3	Hydrogen Bonding Rules	75
	3.4	Interpe	enetration	75
	3.5	Hydro	gen Bonding Structures	77
		3.5.1	Discrete Hydrogen Bonding Capsules	77
		3.5.2	1D Infinite Hydrogen Bonding Nanotubes	84
		3.5.3	2D and 3D Borromean Arrayed Organic Crystals	90
		3.5.4	2D → 3D Parallel Polycatenated Structures	93
		3.5.5	3D Interpenetrated dia and pcu Frameworks	95
		3.5.6	Unusual Aggregation Phase of Water Molecules	96
	3.6		eations	99
		3.6.1	Crystal Engineering of Solid State Photochemical	
			Reactions	99
		3.6.2	Gas Adsorption and Separation	103
		3.6.3	Crystal Engineering of Pharmaceutical Cocrystals	105
	Refe	rences		107
		_		
4			onding-Mediated Self-assembly of Aromatic	
			ular Duplexes	115
		-	and Chuan-Feng Chen	115
	4.1		uction	115
	4.2	4.2.1	mide-Based Molecular Duplex Strands	116
		4.2.1	Oligoamide-Based Molecular Duplex Strands	116
	4.3		Applications	118
	4.3	4.3.1	nydrazide-Based Molecular Duplex Strands	122
		4.3.1	From Supramolecular Zipper to Quadruple Hydrogen-Bonded Heterodimer	123
		4.3.2	Strict Self-complementary Oligohydrazide-Based	123
		7.5.2	Duplexes	124
			Duplenes	14

Contents ix

		4.3.3 Shuttle Movement	125
		4.3.4 Mutual Responsive Low Molecular Mass Organic	
		Gelators	127
		4.3.5 Supramolecular Substitution	127
		4.3.6 Amide-Urea-Based Molecular Duplexes	128
		4.3.7 "Hao" Templated Molecular Duplex	131
	4.4	"Covalent Casting" Strategy-Based Molecular Duplexes	131
	4.5	Other Molecular Duplex Strands	133
	4.6	Conclusions and Outlook	135
	Refe	rences	135
5	Hydi	rogen Bonding-Driven Anion Recognition	137
	Lipir	ng Cao, Jie Zhao, Dong Yang, Xiao-Juan Yang and Biao Wu	
	5.1	Introduction	137
	5.2	Amide-Based Anion Recognition	138
	5.3	Urea-Based Anion Recognition	149
	5.4	Pyrrole-Based Anion Recognition	164
	5.5	CH Donor-Based Anion Recognition	175
	5.6	OH-Based Anion Recognition	178
	5.7	Conclusion	181
	Refe	rences	181
6		nation of Hydrogen-Bonded Self-assembled Structures	
		olar Solvents	187
	-	atim Banerjee and Carsten Schmuck	
	6.1	Introduction	187
	6.2	Nucleobase Pairing and Nanostructure Formation in Water	188
	6.3	Self-sorting/Orthogonal Self-assembly	193
	6.4	Supramolecular Polymers	201
	6.5	Supramolecular Gels in Aqueous and Polar Organic Media	207
	6.6	Vesicles, Bilayers, Micelles Through H-Bonding	214
	Refe	rences	224
7	_	rogen Bonded Capsules: Chemistry in Small Spaces	227
		uan Liu and Julius Rebek Jr	
	7.1	Why Study Encapsulated Molecules?	227
	7.2	The Capsules and Their Contents	228
		7.2.1 The Tennis Ball	228
		7.2.2 The Softball	230
		7.2.3 A Cylindrical Capsule	23
		7.2.4 The Volleyball	23
	7.3	What's It Like Inside the Capsules?	23
	7.4	How Do Molecules Get In and Out of the Capsules?	234
	7.5	Amplified Intermolecular Forces	23

x Contents

	7.6	Arrangements in Encapsulation Space:	237
		New Stereochemistry	237
		7.6.1 Social Isomers	237
		7.6.2 Single Molecule Solvation	
		7.6.3 Isotope Effects	239
		7.6.4 Constellations	240
		7.6.5 Diastereomers	242
	7.7	Chiral Spaces	243
	7.8	Reactivity	245
	7.9	Conclusion	246
	Refe	rences	247
8	-	rogen Bonded Organic Nanotubes	249
		Li Hou	
	8.1	Introduction	249
	8.2	Strategies for the Construction of Hydrogen Bonding-Driven	
		Organic Nanotubes	250
	8.3	Nanotubes from Hydrogen Bonding-Induced Helical	
		Structures	251
	8.4	Nanotubes from Tubular Molecules	254
	8.5	Nanotubes from Hydrogen Bonded Rod-like	
		Molecular Units	256
	8.6	Nanotubes from Hydrogen Bonded Cyclic Molecules	258
		8.6.1 Nanotubes from Hydrogen Bonded Cyclic Peptides	258
		8.6.2 Nanotubes from Hydrogen Bonded Cyclic Ureas	26
	8.7	Nanotubes from Hydrogen Bonded Wedge- or Sector-like	
		Molecules	262
	8.8	Conclusions and Outlooks	265
		rences	265
9		onding-Assisted One-Pot Macrocyclization for Rapid	
		struction of H-Bonded Macrocyclic Aromatic Foldamers	269
		qiang Zeng	
	9.1	Introduction	269
	9.2	Concept Formulation	27
	9.3	Aryl Amide Macrocycles	274
		9.3.1 Non-fivefold Symmetric Aryl Amide Macrocycles	274
		9.3.2 Fivefold Symmetric Aryl Amide Macrocycles	27
		9.3.3 Highly Selective Production of Strained Aromatic	
		Hexamers	288
		9.3.4 Chemo- and Regio-Selective Demethylations	292
	9.4	Macrocycles Containing Non-amide Linkages	293
	- • •	,	

Contents xi

	9.5	Mechanism of One-Pot Macrocyclization	2	
		9.5.1 Variable Functionalizations Around the Pentameric	_	
		Periphery	2	
		9.5.2 A Chain-Growth Mechanism Underlying the	_	
		Formation of Aromatic Pentamers	3	
		9.5.3 A Non-chain Growth Mechanism Underlying		
		the Formation of Strained Aromatic Hexamers		
		and Heptamers	3	
	9.6	Conclusion	3	
	Refer	ences	3	
10	Hydr	ogen-Bonded Supramolecular Polymers	3	
	Chen Lin, Tangxin Xiao and Leyong Wang			
	10.1	Introduction	3	
	10.2	Hydrogen-Bonding Building Blocks	3	
	10.3	Hydrogen-Bonded Main-Chain Supramolecular Polymers		
		Constructed by Low-Molecular-Weight Monomers	3	
	10.4	Hydrogen-Bonded Supramolecular Polymers Constructed		
		by High-Molecular-Weight Conventional Polymers		
		that Are Functionalized by Hydrogen-Bonded Motifs	3	
		10.4.1 Telechelic Supramolecular Polymers	3	
		10.4.2 "Side-Chain" Supramolecular Polymer Networks	3	
	10.5	Supramolecular Polymers Constructed by Orthogonal		
		Hydrogen Bonding-Driven Self-assembly and Other		
		Non-covalent Interactions	3	
	10.6	Conclusions	3	
	Refer	rences	3	