Table of Contents

Pr	eface)	v
Н	olger	Rauhut	
	0	ressive Sensing and Structured Random Matrices	
1		oduction	1
2	Recovery via ℓ_1 -Minimization		
_	2.1	Preliminaries and Notation	
	2.2	Sparse Recovery	
		Null Space Property and Restricted Isometry Property	
		Recovery of Individual Vectors	
		Coherence	
	2.6	Restricted Isometry Property of Gaussian	
		and Bernoulli Random Matrices	15
3		ctured Random Matrices	
		Nonuniform versus Uniform Recovery	
4		dom Sampling in Bounded Orthonormal Systems	
		Bounded Orthonormal Systems	
	4.2	Nonuniform Recovery	
	4.3		
		ial Random Circulant Matrices	
6		ls from Probability Theory	
	6.1		
		Moments and Tails	
	6.3	Rademacher Sums and Symmetrization	
	6.4	1	
	6.5	Noncommutative Khintchine Inequalities	
	6.6	Rudelson's Lemma	
	6.7		46
	6.8	Noncommutative Khintchine Inequalities	40
		for Decoupled Rademacher Chaos	
		Dudley's Inequality	
_		Deviation Inequalities for Suprema of Empirical Processes	
7		of of Nonuniform Recovery Result for Bounded Orthonormal Systems	
		Nonuniform Recovery with Coefficients of Random Signs	
		Condition Number Estimate for Column Submatrices	
	1.3	Finishing the Proof	04

8	Proof of Uniform Recovery Result for Bounded Orthonormal Systems.	65
	8.1 Start of Proof	65
	8.2 The Crucial Lemma	66
	8.3 Covering Number Estimate	69
	8.4 Finishing the Proof of the Crucial Lemma	71
	8.5 Completing the Proof of Theorem 8.1	73
	8.6 Strengthening the Probability Estimate	74
	8.7 Notes	
9		
	9.1 Coherence	
	9.2 Conditioning of Submatrices	79
	9.3 Completing the Proof	82
10	0 Appendix	
	10.1 Covering Numbers for the Unit Ball	83
	10.2 Integral Estimates	84
B	Sibliography	85
M	Aassimo Fornasier	
N	Numerical Methods for Sparse Recovery	
1		93
	1.1 Notations	94
2	An Introduction to Sparse Recovery	95
	2.1 A Toy Mathematical Model for Sparse Recovery	95
	2.2 Survey on Mathematical Analysis of Compressed Sensing	100
3		
	3.1 Direct and Iterative Methods	108
4	Numerical Methods for Sparse Recovery	137
	4.1 Iterative Soft-Thresholding in Hilbert Spaces	138
	4.2 Principles of Acceleration	145
5	Large Scale Computing	155
	5.1 Domain Decomposition Methods for ℓ_1 -Minimization	
	5.2 Domain Decomposition Methods for Total Variation Minimization	169
Bi	ibliography	195
Re	onny Ramlau, Gerd Teschke	
	parse Recovery in Inverse Problems	
	Introduction	201
	1.1 Road Map of the Chapter	
	1.2 Remarks on Sparse Recovery Algorithms	

2	Clas	ssical Inverse Problems	.204
	2.1	Preliminaries	. 205
	2.2	Regularization Theory	. 209
3	Non	linear Approximation for Linear Ill-Posed Problems	.212
	3.1	Landweber Iteration and Its Discretization	. 212
	3.2	Regularization Theory for A-Priori Parameter Rules	. 215
	3.3	Regularization Theory by A-Posteriori Parameter Rules	. 217
4	Tikł	nonov Regularization with Sparsity Constraints	. 221
	4.1	Regularization Result for A-Priori Parameter Rules	. 222
	4.2	Convergence Rates for A-Priori Parameter Rules	. 223
	4.3	Regularization Result for A-Posteriori Parameter Rules	. 226
	4.4	Convergence Rates for A-Posteriori Parameter Rules	.229
5	Itera	ated Shrinkage for Nonlinear Ill-Posed Problems	.230
	5.1	Properties of the Surrogate Functional	.231
	5.2		
		Convergence Properties	
	5.4	Application of Sparse Recovery to SPECT	.236
6		ected Accelerated Steepest Descent for Nonlinear Ill-Posed Problems	
	6.1	Preleminaries	. 242
	6.2	Projected Steepest Descent and Convergence	.242
	6.3	Some Algorithmic Aspects	. 250
	6.4	Numerical Experiment: A Nonlinear Sensing Problem	. 252
Bi	bliog	raphy	. 259
Ai	itonii	n Chambolle, Vicent Caselles, Daniel Cremers, Matteo Novaga, Thomas I	Pock
		roduction to Total Variation for Image Analysis	
1		Total Variation	263
_	1.1		
	1.2		
	1.3	The Perimeter. Sets with Finite Perimeter	
	1.4	The Co-area Formula	
	1.5	The Derivative of a BV Function	
2		the Functionals Where the Total Variation Appears	
_	2.1	Perimeter Minimization	
	2.2	The Rudin-Osher-Fatemi Problem	
3		prithmic Issues	
٥	3.1	Discrete Problem	
		Basic Convex Analysis – Duality	
		Gradient Descent	
	3.4		
		Primal-dual Approaches	

	3.6 Graph-cut Techniques	313
	3.7 Comparisons of the Numerical Algorithms	314
4	Applications	317
	4.1 Total Variation Based Image Deblurring and Zooming	317
	4.2 Total Variation with L^1 Data Fidelity Term	318
	4.3 Variational Models with Possibly Nonconvex Data Terms	319
	4.4 The Minimal Partition Problem	327
Α	A Proof of Convergence	331
	bliography	