Inhaltsverzeichnis

1	Gias	siaserii	und nichtineare opusche Effekte: Eine Obersicht	1
	1.1	Lichtv	vellenleiter und Singlemode-Glasfasern	1
	1.2	Linear	re und nichtlineare faseroptische Effekte	3
	1.3	Faserla	aser und Faserverstärker	6
	1.4	Auswi	rkungen und Anwendungen der nichtlinearen Effekte	7
•	Lite	ratur		10
2	Well	lenausb	oreitung in dielektrischen Medien	13
	2.1	Feldgl	eichungen in dielektrischen Medien	14
		2.1.1	Feldgleichungen im Zeitbereich	14
		2.1.2	Maxwell-Gleichungen im Frequenzbereich	16
		2.1.3	Bedeutung der Polarisierung für die Wellenausbreitung	17
	2.2	Mater	ialparameter linearer dielektrischer Medien	18
		2.2.1	Lineare, verlustfreie, isotrope Medien	19
		2.2.2	Frequenzabhängigkeit, Dispersion	20
		2.2.3	Komplexwertige Suszeptibilität, dielektrische Verluste	21
		2.2.4	Kramers-Kronig-Relation	23
		2.2.5	Sellmeier-Gleichung	24
		2.2.6	Anisotrope Medien, tensorielle Beschreibung	25
	2.3	Eigen	schaften nichtlinearer dielektrischer Medien	27
		2.3.1	Skalare nichtlineare Suszeptibilität	27
		2.3.2	Tensordarstellung der nichtlinearen Suszeptibilität	28
		2.3.3	Nichtlineare Suszeptibilität im Zeitbereich	29
		2.3.4	Nichtlineare Suszeptibilität im Frequenzbereich	30
	2.4	Welle	ngleichung in linearen, isotropen Medien	34
		2.4.1	Vektorielle Wellengleichung in inhomogenen Medien	34
		2.4.2	Homogene Medien und skalare Wellengleichung	35
		2.4.3	Wellenausbreitungskonstanten in homogenen Medien	36
		2.4.4	Ebene Wellen in verlustfreien Medien	37
		2.4.5	Leistungstransport und Intensität	40

		2.4.6	Ebene Wellen in verlustbehafteten Medien	40			
		2.4.7	Wellengleichung in linearen verlustbehafteten Medien im				
			Zeitbereich	42			
	2.5		gleichungen in nichtlinearen Medien	43			
		2.5.1	Nichtlineare Wellengleichung im Frequenzbereich	43			
		2.5.2	Nichtlineare Wellengleichung im Zeitbereich	43			
		2.5.3	Näherung der langsam veränderlichen Hüllkurve	44			
	2.6		sation, anisotrope Medien und Doppelbrechung	46			
	2.7	-	gungen an Grenzflächen zweier Dielektrika	48			
	2.8	Materialien für Singlemode-Glasfasern					
	Lite	ratur		54			
3	Mod	len in S	tufenindex-Glasfasern	57 _.			
	3.1	Weller	ngleichung in zylindrischen Wellenleitern	58			
	3.2	Moder	n in Wellenleitern	60			
	3.3	Defini	tionen der modalen Parameter	61			
	3.4	Vektor	rielle Moden in Stufenindex-Fasern	62			
		3.4.1	Lösungsansatz	63			
		3.4.2	Eigenwertgleichung	64			
		3.4.3	TM- und TE-Moden, $\nu = 0$	65			
		3.4.4	HE- und EH-Moden, $\nu > 0$	68			
		3.4.5	Grenzfrequenzen und effektive Brechungsindizes	69			
	3.5	Skalar	re LP-Moden in schwach führenden Fasern	71			
		3.5.1	Skalare Wellengleichung und Lösungsfunktionen	72			
		3.5.2	Eigenwertgleichung der LP-Moden	73			
		3.5.3	Grenzfrequenzen der LP-Moden	74			
		3.5.4	Intensitätsverteilung der LP-Moden	77			
		3.5.5	LP-Moden als Linearkombination entarteter Vektormoden	79			
	3.6		emodefasern	81			
	0.0	3.6.1	Die LP ₀₁ -Grundmode in typischen Singlemodefasern	81			
		3.6.2	Cut-off Wellenlänge	84			
		3.6.3	Modenfeldradien und Fernfeld	85			
		3.6.4	Gauß-Näherung	89			
		3.6.5	Divergenzwinkel und numerische Apertur	90			
		3.6.6	Effektive Modenfläche	92			
	Lite			94			
4	Lin	oaro fac	seroptische Effekte	97			
•	4.1		fung	97			
	4.1	4.1.1	Absorption	98			
			•	100			
		4.1.2	Thermische Zerstörung				
		4.1.3	Nayidigi-direuung	101			

Inhaltsverzeichnis XI

		4.1.4	Biegung	104		
		4.1.5	Typische Dämpfungsdaten von Standardfasern	106		
	4.2	Disper	sion	108		
		4.2.1	Modendispersion	108		
		4.2.2	Chromatische Dispersion	109		
		4.2.3	Pulsausbreitung in dispersiven Fasern	114		
	4.3	Polaris	sation und Doppelbrechung	118		
		4.3.1	Ursachen der Doppelbrechung	118		
		4.3.2	Lineare Doppelbrechung	120		
		4.3.3	Zirkulare Doppelbrechung	122		
		4.3.4	Statistisch verteilte Doppelbrechung	123		
		4.3.5	Polarisationserhaltende Glasfasern	124		
		4.3.6	Polarisationsmodendispersion	126		
	Liter	ratur	·······	128		
5			er Brechungsindex	133		
	5.1		lagen des nichtlinearen Brechungsindex	133		
	5.2		ineare Polarisierbarkeit in Glas	135		
	5.3		inearer Brechungsindex in Glas	140		
	5.4		inearer Koeffizient von Glasfasern	143		
	Lite	ratur		146		
6	Nich	ıtlinear	e Schrödinger-Gleichung	149		
	6.1	Ansatz	z und Herleitung	149		
		6.1.1	Pulsausbreitung in linearen Wellenleitern	150		
		6.1.2	Lineare Ausbreitungsgleichung	152		
		6.1.3	Nichtlineare Schrödinger-Gleichung	154		
	6.2	Gekop	ppelte Schrödinger-Gleichungen	155		
	6.3	Der S _l	plit-Step-Fourier-Algorithmus	157		
		6.3.1	Prinzip der Split-Step-Fourier-Methode	158		
		6.3.2	Fehlerbetrachtung	160		
		6.3.3	Schrittweitenbestimmung	163		
		6.3.4	Modifizierte Split-Step-Verfahren	169		
	Lite	ratur		171		
7	Effekte der Kerr-Nichtlinearität in Glasfasern					
	7.1		phasenmodulation	173		
		7.1.1	Selbstphasenmodulation ohne Dispersionseinfluss	174		
		7.1.2	Selbstphasenmodulation und Dispersion	177		
		7.1.3	Superkontinuum-Erzeugung	179		
	7.2	Kreuz	phasenmodulation	180		
	73		ellenmischung	183		

		7.3.1	Frequenzen der Vierwellenmischung	182
		7.3.2	Phasenanpassung	184
		7.3.3	Analytische Bestimmung der Amplituden, parametrische	
			Verstärkung	188
	7.4	Modul	ationsinstabilität	199
		7.4.1	Skalare MI im Bereich anomaler Dispersion	200
		7.4.2	Vektorielle MI in doppelbrechenden Fasern	200
	Lite	ratur		201
8	Stin	nulierte	Raman-Streuung	205
	8.1	Ramar	n-Streuung: Eine Übersicht	205
		8.1.1	Klassifizierung der Streuprozesse	205
		8.1.2	Raman-Streuprozesse	207
	8.2	Sponta	ane Raman-Streuung	208
		8.2.1	Placzek-Modell, klassische Elektrodynamik	208
		8.2.2	Quantenelektronisches Modell	210
		8.2.3	Makroskopische Streukoeffizienten	215
		8.2.4	Spontane, Raman-Streuung in Glasfasern	216
	8.3	Stimu	lierte Raman-Streuung	218
		8.3.1	Quantenelektronische Betrachtung der SRS	218
		8.3.2	Elektrodynamische Betrachtung der SRS	220
		8.3.3	Frequenzabhängigkeit der SRS	224
		8.3.4	Impulsantwort der SRS	226
		8.3.5	Zusammenhang zwischen stimulierter und spontaner	
			Raman-Streuung	228
		8.3.6	Lichtverstärkung durch SRS	228
		8.3.7	Stimulierte Raman-Streuung in Glasfasern	229
		8.3.8	Einfluss der Polarisation	234
		8.3.9	Vergleich der SRS in verschiedenen Fasertypen	238
	8.4	Rama	n-Faserverstärker	239
		8.4.1	Gekoppelte Leistungsgleichungen	240
		8.4.2	Kleinsignalverstärkung	241
		8.4.3	Großsignalverstärkung	244
		8.4.4	Messung des faserspezifischen Raman-Koeffizienten	247
	8.5	Stimu	liert-verstärkte spontane Raman-Streuung	248
		8.5.1	Quantitative Beschreibung der spontanen Raman-Streuung	250
		8.5.2	Spontane Raman-Streuung in den gekoppelten	
			Leistungsgleichungen	252
		8.5.3	Beispielsimulationen zur verstärkten spontanen	
			Raman-Streuung	254
		8.5.4	Analytische Bestimmung der SRS-Schwelle	258
		255	Raman-Superstrahler	267

Inhaltsverzeichnis XIII

		8.5.6	Rauschen in Raman-Verstärkern	268
		8.5.7	Kaskadierte Raman-Streuung	275
	8.6	Beispie	l für einen Raman-Leistungsverstärker	277
	Liter	atur		278
)	Stim	ulierte l	Brillouin-Streuung	283
	9.1		in-Streuung: Eine Übersicht	283
	9.2		agen der Brillouin-Streuung	286
			Schallwellen in Festkörpern	286
		9.2.2	Photoelastischer Effekt	292
		9.2.3	Akustooptischer Effekt und Brillouin-Streuung	295
		9.2.4	Abhängigkeit der Schallgeschwindigkeit von der Dotierung	304
			Akustische Moden in Glasfasern	305
	9.3	Sponta	ne Brillouin-Streuung	309
		9.3.1	Spontane Brillouin-Streuung im Volumenmaterial	310
		9.3.2	Spontane Brillouin-Streuung im Teilchenbild	311
		9.3.3	Spontane Brillouin-Streuung in Glasfasern	313
	9.4	Stimuli	ierte Brillouin-Streuung	321
		9.4.1	Elektrostriktion	321
		9.4.2	Interferenz zweier gegenläufiger Wellen mit unterschiedlichen	
			Frequenzen	328
		9.4.3	Ausbreitungsgleichungen der stimulierten Brillouin-Streuung	332
		9.4.4	Einfluss der Polarisation	342
	9.5	Stimul	ierte Brillouin-Streuung in Glasfasern	343
		9.5.1	Faserspezifischer Brillouin-Koeffizient	343
		9.5.2	Gekoppelte Leistungsgleichungen	344
		9.5.3	Kleinsignalverstärkung	345
		9.5.4	Großsignalverstärkung	346
		9.5.5	Messung des SBS-Koeffizienten einer Faser	348
		9.5.6	Einfluss der spektralen Breite der Pumplichtwelle	352
		9.5.7	Einfluss der Pulsdauer	357
		9.5.8	Einfluss der Dotierung und Fasergeometrie auf die SBS	358
		9.5.9	Polarisation und SBS in Glasfasern	362
			Brillouin-Faserverstärker, -Filter und -Faserlaser	369
		9.5.11	Slow Light	371
	9.6	Stimul	iert-verstärkte spontane Brillouin-Streuung	374
		9.6.1	SBS-Schwelle	376
		9.6.2	Mathematische Beschreibung und Modellierung	377
		9.6.3	SBS-Schwelle in aktiven Fasern	385
		9.6.4	Bedeutung der SBS-Schwelle	387
	9.7	Sensor	anwendungen der Brillouin-Streuung	389
		9.7.1	Dehnungs- und Temperatur-Koeffizienten der Brillouin-Streuung .	389

		9.7.2	Einfluss von Druck und Biegung	391
		9.7.3	Ortsaufgelöste verteilte Sensorverfahren	391
	9.8	Maßna	hmen zur SBS-Unterdrückung	393
		9.8.1	SBS-Unterdrückung: Eine Übersicht	393
		9.8.2	Wickelmaschine zur Herstellung von verspannten Fasern	398
		9.8.3	Effektiver SBS-Koeffizient in Fasern mit ortsvariabler	
			Dehnung	403
		9.8.4	Berechnung des SBS-Spektrums mit einer Dichtefunktion	404
		9.8.5	SBS-Unterdrückung mit einer linearen Dehnungsverteilung	406
		9.8.6	Beliebige spektrale Formung der SBS	409
		9.8.7	Optimierte Verspannung in aktiven Fasern	412
		9.8.8	Zusammenfassung der SBS-Formung in verspannten Fasern	417
	9.9	Dynam	nik der SBS	417
	Liter	atur		420
. .	_	_	_	
10			erlaser	431
	10.1		und Merkmale von Raman-Faserlasern	431
			Aufbau eines einfachen Raman-Faserlasers	431
			Kaskadierte Raman-Faserlaser	433
			Merkmale von Raman-Faserlasern	433
			Beispiel für einen Raman-Faserlaser	435
			Spezielle Raman-Faserlaser	436
	10.2		tative Beschreibung von Raman-Faserlasern	437
			Schwingbedingung	438
			Beschreibung durch gekoppelte Leistungsgleichungen	443
			Analytische Überlegungen	444
	10.3		ative Berechnung der Ausgangsleistung	445
			Simulation mit dem Schießverfahren	446
			Simulationsbeispiele	449
	10.4		Bragg-Gitter für Raman-Faserlaser	451
			Grundlagen von Faser-Bragg-Gittern	451
			Photosensitivität und Schreibprozess von FBGs	453
			Einfluss von Dehnung und Temperatur	455
			Nachbearbeitung und Feinabstimmung von FBGs	455
			FBGs für Raman-Faserlaser	457
	10.5		ale Eigenschaften von Raman-Faserlasern	458
			Verbreiterung durch FWM	458
			Effektive Reflektivität der Resonator-FBGs	460
			Mathematisches Simulationsmodell	461
			Schrittweitensteuerung	465
			Simulations- und Messergebnisse	469
		10.5.6	DBR- und DFB-Raman-Faserlaser	475

Inhaltsverzeichnis

10.5.7 Raman-MOPA	477
· · · · · · · · · · · · · · · · · · ·	
10.6.4 Beispiel für einen SHG-Raman-Faserlaser	485
Literatur	487
10.6 Frequenzverdopplung von Raman-Faserlasern 479 10.6.1 Optische Frequenzverdopplung 479 10.6.2 SHG in periodisch gepolten Kristallen 483 10.6.3 Gelbe Strahlquellen durch SHG eines Raman-Faserlasers 484 10.6.4 Beispiel für einen SHG-Raman-Faserlaser 485 Literatur 483 nhang A: Definitionen und mathematische Hilfsmittel 493	
Sachverzeichnis	503