

Contents

1	Introduction	1
	References	3
2	Reaction Kinetics Basics	5
2.1	Stoichiometry and Reaction Rate	5
2.1.1	Reaction Stoichiometry	5
2.1.2	Molecularity of an Elementary Reaction	9
2.1.3	Mass Action Kinetics and Chemical Rate Equations	10
2.1.4	Examples	14
2.2	Parameterising Rate Coefficients	18
2.2.1	Temperature Dependence of Rate Coefficients	18
2.2.2	Pressure Dependence of Rate Coefficients	20
2.2.3	Reversible Reaction Steps	26
2.3	Basic Simplification Principles in Reaction Kinetics	28
2.3.1	The Pool Chemical Approximation	28
2.3.2	The Pre-equilibrium Approximation	29
2.3.3	Rate-Determining Step	30
2.3.4	The Quasi-Steady-State Approximation (QSSA)	30
2.3.5	Conserved Properties	32
2.3.6	Lumping of Reaction Steps	33
	References	34
3	Mechanism Construction and the Sources of Data	39
3.1	Automatic Mechanism Generation	39
3.2	Data Sources	46
	References	48

4	Reaction Pathway Analysis	53
4.1	Species Conversion Pathways	53
4.2	Pathways Leading to the Consumption or Production of a Species	56
	References	59
5	Sensitivity and Uncertainty Analyses	61
5.1	Introduction	61
5.2	Local Sensitivity Analysis	63
5.2.1	Basic Equations	63
5.2.2	The Brute Force Method	66
5.2.3	The Green Function Method	67
5.2.4	The Decoupled Direct Method	68
5.2.5	Automatic Differentiation	69
5.2.6	Application to Oscillating Systems	70
5.3	Principal Component Analysis of the Sensitivity Matrix	71
5.4	Local Uncertainty Analysis	74
5.5	Global Uncertainty Analysis	75
5.5.1	Morris Screening Method	76
5.5.2	Global Uncertainty Analysis Using Sampling-Based Methods	79
5.5.3	Sensitivity Indices	86
5.5.4	Fourier Amplitude Sensitivity Test	88
5.5.5	Response Surface Methods	90
5.5.6	Moment-Independent Global Sensitivity Analysis Methods	100
5.6	Uncertainty Analysis of Gas Kinetic Models	101
5.6.1	Uncertainty of the Rate Coefficients	102
5.6.2	Characterisation of the Uncertainty of the Arrhenius Parameters	106
5.6.3	Local Uncertainty Analysis of Reaction Kinetic Models	111
5.6.4	Examples of the Application of Uncertainty Analysis to Methane Flame Models	114
5.6.5	Applications of Response Surface Techniques to Uncertainty Analysis in Gas Kinetic Models	119
5.6.6	Handling Correlated Inputs Within Global Uncertainty and Sensitivity Studies	123
5.7	Uncertainty Analysis in Systems Biology	124
	Uncertainty Analysis: General Conclusions	128
	References	133
6	Timescale Analysis	145
6.1	Introduction	145
6.2	Species Lifetimes and Timescales	146

6.3	Application of Perturbation Theory to Chemical Kinetic Systems	152
6.4	Computational Singular Perturbation Theory	160
6.5	Slow Manifolds in the Space of Variables	163
6.6	Timescales in Reactive Flow Models	169
6.7	Stiffness of Reaction Kinetic Models	171
6.8	Operator Splitting and Stiffness	175
	References	177
7	Reduction of Reaction Mechanisms	183
7.1	Introduction	184
7.2	Reaction Rate and Jacobian-Based Methods for Species Removal	185
7.2.1	Species Removal via the Inspection of Rates	185
7.2.2	Species Elimination via Trial and Error	186
7.2.3	Connectivity Method: Connections Between the Species Defined by the Jacobian	187
7.2.4	Simulation Error Minimization Connectivity Method	188
7.3	Identification of Redundant Reaction Steps Using Rate-of-Production and Sensitivity Methods	189
7.4	Identification of Redundant Reaction Steps Based on Entropy Production	192
7.5	Graph-Based Methods	193
7.5.1	Directed Relation Graph Method	193
7.5.2	DRG-Aided Sensitivity Analysis	197
7.5.3	DRG with Error Propagation	198
7.5.4	The Path Flux Analysis Method	200
7.5.5	Comparison of Methods for Species Elimination	201
7.6	Optimisation Approaches	202
7.6.1	Integer Programming Methods	202
7.6.2	Genetic Algorithm-Based Methods	206
7.6.3	Optimisation of Reduced Models to Experimental Data	208
7.6.4	Application to Oscillatory Systems	209
7.7	Species Lumping	210
7.7.1	Chemical Lumping	211
7.7.2	Linear Lumping	217
7.7.3	Linear Lumping in Systems with Timescale Separation	222
7.7.4	General Nonlinear Methods	224
7.7.5	Approximate Nonlinear Lumping in Systems with Timescale Separation	226

7.7.6	Continuous Lumping	227
7.7.7	The Application of Lumping to Biological and Biochemical Systems	229
7.8	The Quasi-Steady-State Approximation	231
7.8.1	Basic Equations	232
7.8.2	Historical Context	233
7.8.3	The Analysis of Errors	234
7.8.4	Further Recent Approaches to the Selection of QSS-Species	238
7.8.5	Application of the QSSA in Spatially Distributed Systems	239
7.8.6	Practical Applications of the QSSA	240
7.9	CSP-Based Mechanism Reduction	242
7.10	Numerical Reduced Models Derived from the Rate Equations of the Detailed Model	244
7.10.1	Slow Manifold Methods	245
7.10.2	Intrinsic Low-Dimensional Manifolds	247
7.10.3	Application of ILDM Methods in Reaction Diffusion Systems	251
7.10.4	Thermodynamic Approaches for the Calculation of Manifolds	253
7.11	Numerical Reduced Models Based on Geometric Approaches	257
7.11.1	Calculation of Slow Invariant Manifolds	257
7.11.2	The Minimal Entropy Production Trajectory Method	259
7.11.3	Calculation of Temporal Concentration Changes Based on the Self-Similarity of the Concentration Curves	259
7.12	Tabulation Approaches	260
7.12.1	The Use of Look-Up Tables	261
7.12.2	In Situ Tabulation	263
7.12.3	Controlling Errors and the Invariant Constrained Equilibrium Pre-image Curve (ICE-PIC) Method	267
7.12.4	Flamelet-Generated Manifolds	270
7.13	Numerical Reduced Models Based on Fitting	271
7.13.1	Calculation of Temporal Concentration Changes Using Difference Equations	272
7.13.2	Calculation of Concentration Changes by Assuming the Presence of Slow Manifolds	274
7.13.3	Fitting Polynomials Using Factorial Design	275
7.13.4	Fitting Polynomials Using Taylor Expansions	276
7.13.5	Orthonormal Polynomial Fitting Methods	276
7.13.6	High-Dimensional Model Representations	281

7.13.7	Artificial Neural Networks	282
7.13.8	Piecewise Reusable Maps (PRISM)	286
7.14	Adaptive Reduced Mechanisms	287
	References	291
8	Similarity of Sensitivity Functions	313
8.1	Introduction and Basic Definitions	313
8.2	The Origins of Local Similarity and Scaling Relationships	316
8.3	The Origin of Global Similarity	322
8.4	Similarity of the Sensitivity Functions of Biological Models	325
8.5	The Importance of the Similarity of Sensitivity Functions	330
	References	335
9	Computer Codes for the Study of Complex Reaction Systems	337
9.1	General Simulation Codes in Reaction Kinetics	337
9.2	Simulation of Gas Kinetics Systems	339
9.3	Analysis of Reaction Mechanisms	342
9.4	Investigation of Biological Reaction Kinetic Systems	344
9.5	Global Uncertainty Analysis	347
	References	349
10	Summary and Concluding Remarks	353
	Index	359