Contents

1	Intro	oduction	l				
	1.1	High-Order Numerical Methods on Unstructured Grids					
	1.2	Applications and Challenges for Unstructured					
		High-Order Methods	5				
		1.2.1 Computational Cost and Storage	6				
		1.2.2 Boundary Treatment	6				
		1.2.3 Shock Capturing Technique	7				
		1.2.4 Efficient Time Integration Strategy	9				
	1.3	The Target of This Thesis	9				
	Refe	rences	11				
2	High-Order Finite Volume Method for the Compressible						
	Flow	ys	15				
	2.1	The Framework of the Finite Volume Method	15				
	2.2	The Time Integration Schemes					
	2.3	High-Order K-Exact Reconstruction					
	2.4	Evaluation of Viscous Flux in High-Order Accuracy	23				
		2.4.1 The Viscous Flux Computation	23				
		2.4.2 On the Implementation of Viscous Boundary					
		Conditions	24				
	2.5	Parallelization for Large-Scale Computation	25				
	2.6	Numerical Tests	26				
		2.6.1 Accuracy Validation	27				
		2.6.2 The Flat Plate Boundary Layer	30				
		2.6.3 The Subsonic Flow Around NACA0012 Airfoil	30				
		2.6.4 Sound Field Generated by the Flow Around					
		a Circular Cylinder	32				
		2.6.5 The Steady Viscous Flow Around the Sphere	34				
	2.7	Conclusions	35				
	Refe	rences	35				

xiv Contents

9		Accuracy Treserving Limiters for High-Order Plante						
	Volume Methods							
	3.1	The Limiters on Unstructured Grids and the Methodology						
		of Cor	nstructing Limiters in This Chapter					
	3.2	The Secondary Reconstruction						
	3.3	The Q	uadrature-Free K-Exact WENO Limiters					
		3.3.1	The Stencils for the Secondary Reconstruction					
		3.3.2	Quadrature-Free Nonoscillation WENO					
			Reconstruction in Characteristic Space					
	3.4	The W	/BAP Limiters					
		3.4.1	The Introduction of WBAP Functions					
		3.4.2	The Mechanism for Controlling the Numerical					
			Oscillations					
		3.4.3	The Successive Limiting Procedure					
	3.5	The G	roup Weighted Limiters					
	3.6		ary and Comparisons on These Three Limiters					
	3.7	The Problem-Independent Shock Detector						
	3.8		rical Accuracy Test					
		3.8.1	Isentropic Vortex Problem					
		3.8.2	The Constructed Exact Solution of Three					
			Dimensional Euler Equations					
	3.9	Nume	rical Tests					
	- 12	3.9.1	Rotation of Slotted Cylinder					
		3.9.2	Shock Tube Problems					
		3.9.3	Shu-Osher Problem					
		3.9.4	Double Mach Reflection Problem					
		3.9.5	A Mach 3 Wind Tunnel with a Step					
		3.9.6	Transonic Flow Around NACA0012 Airfoil					
		3.9.7	Shock Wave Impingement on a Spatially Evolving					
		5.7.7	Mixing Layer					
		3.9.8	Viscous Shock Tube Problem					
		3.9.9	Explosion Problems on Two and Three Dimensions					
	3.10		usions					
		erences						
	Refer	chees .						
4	Mive	d Elem	ent and Curved Boundary Treatment					
•	4.1							
	7,1	Mixed Elements and Curved Boundaries						
		4.1.1	The Isoparametric Transformation on Mixed					
		7.1.1	Elements					
		4.1.2	The Isoparametric Transformation on Curved					
		4.1.2	Flements					
			PARTHERIA					

Contents xv

	4.2	The Nonoscillatory High-Order FVM in Mixed Grids		101
		4.2.1	The k-Exact Reconstruction and Secondary	
			Reconstruction	102
		4.2.2	The k-Exact WENO Limiter	103
		4.2.3	The WBAP Limiter Based on the Successive	
			Limiting Procedure	105
	4.3	The C	Curved Boundary Treatment	105
	4.4	Nume	rical Tests	107
		4.4.1	Supersonic Vortex	107
		4.4.2	The Supersonic Viscous Flow Around the	
			NACA0012 Airfoil	107
		4.4.3	The Three-Dimensional Constructed Solutions	109
		4.4.4	Lax Shock Tube Problem	110
		4.4.5	Transonic Flow Around ONERA M6 Wing	112
		4.4.6	The Unsteady Flow Around the Sphere	114
		4.4.7	The Supersonic Flow Around the Sphere	116
	4.5	Concl	usions	118
	Refe	rences .		120
5	The	Discont	tinuous Galerkin Method	121
	5.1	Frame	ework of the Discontinuous Galerkin Methods	121
	5.2		Calculation of Viscous Terms	123
	5.3	The C	Construction of the Multidimensional Limiters	125
		5.3.1	The Secondary Reconstruction	125
		5.3.2	The WENO Limiting Procedure in Characteristic	
			Space	127
	5.4	Nume	erical Tests	129
		5.4.1	Accuracy Tests	130
		5.4.2	Shock Capturing Capability	133
		5.4.3	Double Mach Reflection	134
		5.4.4	Mach 3 Wind Tunnel with a Step	135
		5.4.5	Viscous Shock Tube Problem	137
		5.4.6	The Unsteady Flow Around the Sphere	137
	5.5	Concl	lusions	139
	Refe	rences .		139
6	Cone	clusions	and Prospects	141
Aj	pendi	ix A: T	he Derivation of the Two Limits of WBAP Limiters	143
A	pendi	ix B: T	he Proof of WBAP Lemma 1	147