Contents

Part I Background of the Energetics of Stochastic Processes

l	Phy.	sics of La	angevin Equation	3		
	1.1	Randon	Events or Fluctuations	5		
		1.1.1	* Introduction: What Is Fluctuation?	5		
		1.1.2	Random Events Are Represented Through Random Variables	6		
		1.1.3	Free Brownian Motion Is the Force-Free Motion			
			of Mesoscopic Objects in a Thermal Environment	17		
	1.2	Constru	ction of Langevin Equations	26		
		1.2.1	Langevin Equation Can Be Intuitively Constructed, But Is			
			Derivable from Micro-Mechanics Through the Markov			
			Approximation	26		
		1.2.2	Stochastic Calculus is the Mathematical Framework that			
			Removes Ambiguities in the Langevin Equation	34		
		1.2.3	Fokker-Planck Equation is the Mathematical Equivalent			
			of the Langevin Equation when We Discuss the Ensemble			
			Behavior	43		
	1.3	Physical	I Implications of Langevin Equations	47		
		1.3.1	Langevin Equation Transforms the Memory-Free Gaussian			
			Noise into Variety of Fluctuations	47		
		1.3.2	Each Langevin Equation Has Its Own Smallest			
			Space-Timescale of Applicability	50		
		1.3.3	A Trajectory of Langevin Equation Over a Long Time			
			Allows Us to Draw Some Information About the Space			
			and the Potential	54		
		1.3.4	Thermal Ratchet Models are the Examples of Nontrivial			
			Fluctuations	58		
	1.4	Discussi	ion	64		
	Refe	References				
	Ctro	atura of	Macroscopic Thermodynamics	67		
	2.1		oncepts of Thermodynamics			
	4.1	Dasic C	oncepts of Inermodynamics	U		

digitalisiert durch

xiv Contents

		2.1.1	*Terminology of Thermodynamics Includes System,	
			Environments, and External System	67
		2.1.2	* Some Laws of Macroscopic Thermodynamics	
			Distinguish Thermodynamics from Mechanics	70
		2.1.3	Thermodynamic Relations Come from Several Different	
			Aspects of Thermodynamic Systems	71
		2.1.4	* Heat of Macroscopic Open System Consists of Two	
			Terms Both Including Entropic Parts	76
	2.2	Free E	nergy as an Effective Potential Energy for the External System	78
	2.3		Energy Conversion	81
		2.3.1	Unused Work Is Not Released Heat	81
		2.3.2	Chemical Coupling Is a Transversal Downhill of a Gibbs	
			Free-Energy Surface	84
		2.3.3	The Efficiencies of Heat Engine and Chemical Engine	
			are Limited by the Second Law of Thermodynamics	86
		2.3.4	Discontinuous Phase Transition Accompanies	-
			the Compensation Between Enthalpy and Entropy	89
	2.4	Notes o	on the Extension of the Thermodynamics	91
				92
3	Fluc	tuation	s in Chemical Reactions	93
	3.1		ground of Chemical Reactions	93
	5.1	3.1.1	"Molecule" in Chemical Reaction Is a Nonequilibrium),
		3.1.1	State with Internal Degrees of Freedom	94
	3.2	Macros	scopic Description	96
	٠.2	3.2.1	*Law of Mass Action Relates the Rate Constants of	70
		5.2.1	Reaction to the Canonical Equilibrium Parameters	96
		3.2.2	*Large Separation of the Rate Constants Causes Different	70
		J.L.L	Regimes of Reaction and Rate-Limiting Processes	99
	3.3	Stochas	stic Description	
	5.5	3.3.1	Stochastic Transitions Among Discrete States Are	105
		3.3.1	Described by Master Equation or Discrete Langevin	
			Equation	105
		3.3.2	Stochasticity of Molecule Numbers in the Chemical	105
		3.3.2	Reaction Can Be Described by Discrete Master Equation	112
		3.3.3	Stochastic Open System Is a Class of Stochastic Chemical	110
		3.3.3	Reaction System	124
	3.4	Discuss	sion	
			SIOII	
	Keie	iences .	•••••	130
Pa	rt II	Basics	of Stochastic Energetics	
4	Con	cept of l	Heat on Mesoscopic Scales	135
		Frameu		

Contents xv

		4.1.1	* The Similarity of Setup Between the Fluctuating World
			and the Thermodynamics Leads to a Natural Definition
			of Mesoscopic Heat
		4.1.2	*Energy Balance Along a Single Realization Follows
			from the Definition of Heat
		4.1.3	The Ensemble Average Heat Flux has Several
			Different Expressions
	4.2	Genera	dization
		4.2.1	Heat on the Mesoscopic Scale Can Be Generalized
			to the System in Contact with More Than One
			Thermal Environments
		4.2.2	Energetics of Thermal Ratchet Motors
		4.2.3	Fluctuating Open System Does Not Exchange Chemical
			Potential as Energy of Particle
	4.3	Discus	sion
		4.3.1	Applicability of Stochastic Energetics to Different Forms
			of Langevin Equations
		4.3.2	Applicability to Nonequilibrium Processes and Limitations
			of the Langevin Description
		4.3.3	Comments
	Refe	erences .	
5	Wor	k on th	e Mesoscopic Systems
_	5.1		Done by External System
	5.2		Jnder Infinitely Slow Variation of Parameters
	- · · -	5.2.1	The Quasistatic Work of a Single Trajectory Leads
			to a Pertinent Free Energy and Is, Therefore, Reversible 177
		5.2.2	The Criterion of the Quasistatic Process Refers to the
		5.2.2	Force on the External System
		5.2.3	Quasistatic Work Reflects Some Aspects of the System's
		5.2.5	State, but Not All
	5.3	Work I	Jnder Very Slow Variation of Parameters
	5.5	5.3.1	The Average Irreversible Work and the Time Spent
		3.3.1	for the Work are Complementary
		5.3.2	*For the External System the Weak Irreversible Work
		3.3.4	is Ascribed to a (Macro) Frictional Force
	5.4	Work I	Juder the Change of Parameter at Arbitrary Rates
	3.4	5.4.1	Jarzynski's Nonequilibrium Work Relation Leads
		3.4.1	
		<i>5</i> 4 0	to the Nonnegativity of the Average Irreversible Work 194
		5.4.2	The Fluctuation Theorem Leads to Jarzynski's
		ъ.	Nonequilibrium Work Relation for Discrete Process 198
	5.5		sion
		5.5.1	How Fast Can the External Parameter Be Changed? 199
		5.5.2	Can We Change a Parameter Slowly Enough
			for the Quasistatic Process?
	Refe	rences .	

xvi Contents

6	Hea	t Viewe	d at Different Scales	203
	6.1	* Introd	duction – What Is Heat?	203
		6.1.1	Each Description Scale Has its Own Definition of Heat	203
		6.1.2	Examples of Nonuniqueness of Heat	
	6.2	* Calor	imetric Heat vs. the Heat of Stochastic Energetics	
		6.2.1	System Can Have Different Levels of Random Variables	
		6.2.2	Equilibrium Statistical Mechanics of Mesoscopic Variables	
			Can Have Different Level of Free-Energy Functions	209
		6.2.3	Calorimetric Heat Can Be Deduced from Stochastic	
		5.2.0	Energetics	211
	6.3	Change	e in the Scale of Heat	
	0.5	6.3.1	Fluid Fluctuations Causing Brownian Motion Have Memory	
		6.3.2	*Decay Cascade of Mesoscopic Fluctuations Resolves	
		0.5.2	the Controversy on the Generalized Efficiency of	
			Molecular Motor	217
	Refe	rences		
	ROIL	nences .		220
Pa	rt III	Appli	ications of Stochastic Energetics	
7	Con	trol and	l Energetics	223
	7.1		tions of Quasistatic Operations	
		7.1.1	* Essentially Nonquasistatic Process is Generally Caused	
			by Crossover of Timescales τ_{op} and τ_{sys}	224
		7.1.2	Minimal Cost of the Operation of Single-Bit Memory	
			is Related to the Second Law	231
		7.1.3	* Essentially Nonquasistatic Process Can Take Place upon	
			the Relaxation from Non-Gibbs Ensembles of Fluctuations.	238
	7.2	Detecti	on and Control Under Fluctuations	
		7.2.1	*Two Types of Error-Free and Unbiased Detection	211
		,	Under Fluctuation are Possible	241
		7.2.2	* The Gates to Control Particle's Access Can be Made	241
		1.2.2	Using Adjustable Potential Barriers	240
	7.3	Discuss	sion	
	7.5	7.3.1	Control of Open System Has Both Common	250
		7.5.1	and Distinguished Features with Respect	
				250
	Dofa	ranges	to the Control of Closed System	
	Kele	iences .	•••••	232
o	Ema	E	The second second	255
8	8.1		y Transducers	
	0.1		ally Controlled Free-Energy Transducers	233
		8.1.1	Mesoscopic Carnot Cycle Can Be Ideal Despite Finite	055
		0.1.3	Works of Control	255
		8.1.2	Mesoscopic Open "Carnot Cycle" Can Transform Heat	
	0.2		into Work Without Stockage of Energy	261
	8.2	Autono	omous Free-Energy Transducers	266

Contents xvii

	8.2.1	Autonomous Free-Energy Transducer Functions
		Among Different Equilibrium Environments 267
	8.2.2	Pairs of Sensors and Gates are Enough to Constitute
		an Autonomous Free-Energy Transducer
	8.2.3	Structure–Function Relationship of Molecular Machines
		Is in the Research Domain of Stochastic Energetics 277
Refe	rences	
Append	ix A	
A.1	Append	ix to Chap. 1
	A.1.1	Examples of Probability Distribution: Appendix
		to Sect. 1.1.2.1
	A.1.2	A Particular Aspect of Gaussian Distribution:
		Fluctuation–Response: Appendix to Sect. 1.1.2.1 282
	A.1.3	Sketch of Derivation of (1.10), (1.11), and (1.12):
		Appendix to Sect. 1.1.2.3
	A.1.4	Derivation of (1.23): Appendix to Sect. 1.1.3.2
	A.1.5	Langevin Equation Obtained by the Method of Projection
		Operators: Appendix to Sect. 1.2.1.5
	A.1.6	The Distinction Between Different Types of Calculus:
		Appendix to Sect. 1.2.2.2
	A.1.7	Conversion of Itô's Lemma (1.58) into Stratonovich Form:
		Appendix to Sect. 1.2.2.3
	A.1.8	Derivation of Fokker-Planck Equation (1.73) and Kramers
		Equation (1.74): Appendix to Sect. 1.2.3.1
	A.1.9	Jacobian to Transform $\xi()$ into $x()$:
		Appendix to Sect. 1.3.1.1
	A.1.10	Derivation of Fluctuation-Dissipation (FD) Relation:
		Appendix to Sect. 1.3.1.2
	A.1.11	Derivation of (1.93) and (1.94): Appendix to Sect. 1.3.2.1 291
	A.1.12	Derivation of (1.108): Appendix to Sect. 1.3.3.2 293
	A.1.13	Derivation of the Mean First Passage Time: Appendix
		to Sect. 1.3.3.3
A.2		ix to Chap. 2
	A.2.1	Maxwell Relation in the Fundamental Relation Assures
		the Existence of Thermodynamic Function: Appendix
		to Sect. 2.1.3.2
	A.2.2	Invariance of Thermodynamic Relations and the Choice
		of Reference Energy and Entropy: Appendix to Sect. 2.1.3.4 296
A.3	Append	ix to Chap. 3
	A.3.1	Derivation of (3.27): Appendix to Sect. 3.3.1.4 297
	A.3.2	Derivation of (3.72) and (3.73): Appendix to Sect. 3.3.3.4 298
A.4		ix to Chap. 4
	A.4.1	Derivation of (4.13): Appendix to Sect. 4.1.2.2 299
	A.4.2	Error in the Euler Scheme: Appendix to Sect. 4.1.2.5 300

xviii Contents

	A.4.3	Derivation of (4.27): Appendix to Sect. 4.1.3.2	300
	A.4.4	Derivation of (4.36): Appendix to Sect. 4.2.1.1	301
	A.4.5	Derivation of (4.55): Appendix to Sect. 4.2.1.2	302
	A.4.6	Definition of the Energy of Open System: Appendix	
		to Sect. 4.2.3.3	. 302
	A.4.7	Application of Energy Balance to Other Forms of	
		Langevin Equation: Appendix to Sect. 4.3	. 303
	A.4.8	General Growth Process: Insertion of Functions as well as	
		Variables: Appendix to Sect. 4.3	. 309
A.5	Append	dix to Chap. 5	310
	A.5.1	Statistical Mechanical Derivation of (5.19): Appendix	
		to Sect. 5.2.1.4	. 310
	A.5.2	Quasistatic Transport of Particle: Appendix to Sect. 5.2.3	311
	A.5.3	Derivation of (5.37): Appendix to Sect. 5.3.1	312
	A.5.4	Derivation of the Fluctuation Theorem (FT): Appendix	
		to Sect. 5.4.2	. 314
A.6	Append	dix to Chap. 6	316
A.7	Append	dix to Chap. 7	316
	A.7.1	Derivation of (7.4): Appendix to Sect. 7.1.1.4	316
	A.7.2	Simple Model of Aging and Plastic Flow: Appendix	
		to Sect. 7.1.1.6	. 317
A.8	Append	dix to Chap. 8	319
Refe	rences.		319
Index .			321