Contents

1	mu	oduction	1			
	1.1	General Aspects of Polymeric Materials	1			
	1.2	Nomenclature	3			
	1.3	General Classification of Polymeric Materials	4			
	Refe	rences	5			
2	Phys	Physical Structure of Macromolecules				
	2.1	Structure and Brownian Motion of Macromolecules	7			
	2.2	Molar Mass and Molar Mass Distribution	10			
	2.3	The Random Walk Problem in Three Dimensions	19			
	2.4	Macromolecules in Solution	25			
	2.5	Statistical Shape of Linear Macromolecules in Θ -Solution	31			
	2.6	Statistical Shape of Macromolecules in Good Solvents	35			
	2.7	Analysis of Branched Macromolecules	37			
	2.8	Size of Macromolecules in the Glassy and Molten State	40			
	Refe	rences	41			
3	Expe	Experimental Methods to Determine Molecular Quantities				
	3.1	Osmometry	43			
	3.2	Viscometry	49			
	3.3	Light Scattering	62			
	3.4	Gel Permeation Chromatography	68			
	Refe	erences	75			
4	Stru	acture and States of Polymers	77			
	4.1	Classification of Polymeric Materials	77			
	4.2	Molecular Structure of Amorphous Polymers	87			
	4.3	States of Order of Uncross-Linked Amorphous Polymers	89			
	4.4	Influence of Molar Mass and Cross-Linking Density	94			
	4.5	Semicrystalline Polymers	99			
		4.5.1 Features of Crystallinity	99			
		4.5.2 States of Order	104			
		453 Crystallization	110			

x Contents

	4.6	The Specific Volume of Polymers	111			
		4.6.1 The Specific Volume of Amorphous Polymers	111			
		4.6.2 The Free Volume Theory	115			
		4.6.3 Volume Relaxation and Physical Aging	117			
	Refer	rences	119			
5	Linea	ar Viscoelastic Deformation Behavior in Simple Shear	121			
	5.1	Theoretical Description of the Deformation Behavior				
		of Polymers	121			
	5.2	Creep, Creep Recovery, and Stress Relaxation	122			
	5.3	The Principle of Superposition	127			
	5.4	Relaxation and Retardation Spectra	130			
	5.5	The Creep Recovery Experiment	137			
	5.6	The Creep Compliance of Amorphous Polymers	140			
	5.7	Relations Between Creep and Stress Relaxation	149			
	5.8	Oscillatory Experiments	155			
	5.9	Approximate Relations Between Measurable Viscoelastic				
		Functions	167			
	5.10	The Viscoelastic Behavior of Amorphous Polymers				
		in Shear	177			
	Refer	rences	186			
6	Time	me-Temperature Shift of Mechanical Properties				
	6.1	The Significance of the Time-Temperature Shift for the				
		Description of the Deformation Behavior of Polymers	189			
	6.2	The Time-Temperature Shift Principle	190			
	6.3	The Time-Temperature Shift of the Glass-Rubber				
		Transition	193			
	6.4	The Time-Temperature Shift in the Flow Region				
		of Amorphous Polymers	203			
	6.5	The Time-Temperature Shift in the Flow Region				
		of Semicrystalline Polymers	210			
	6.6	The Time-Temperature Shift of Secondary Transitions				
		in the Glassy State	216			
	Refer	rences	222			
7	Linea	ar Viscoelastic Deformation Under Three-Dimensional				
		ses	223			
	7.1	The Stress Tensor and the Equations for the				
		Balance of Forces	223			
	7.2	The Strain Tensor for Small Deformations	227			
	7.3	The Rheological Equation of State for Isotropic				
		Linear Flastic Materials (Hookean Theory of Flasticity)	230			

Contents xi

	7.4	The Rheological Equation of State for Isotropic Linear				
		Viscoelastic Materials at Small Deformations	231			
	7.5	Simple Shear	233			
	7.6	Isotropic Compression	234			
	7.7	Uniaxial Tensile Stress	235			
	7.8	The Viscoelastic Functions for Amorphous Uncross-Linked				
		Polymers	239			
	Refer	rences	241			
8	Fundamentals of the Rheology of Large Deformations 24					
	8.1	Kinematics of Large Deformations	243			
	8.2	Deformation Gradient and Finite Strain Tensors	247			
	8.3	Relative Deformation Gradient and Relative Strain				
		Tensors	250			
	8.4	The Rate of Strain Tensor	254			
	8.5	Dynamics of Deformable Bodies	256			
	8.6	Eigenvalues and Invariants of the Stress Tensor	259			
	8.7	Transformation of the Strain Tensors and the Rate of Strain				
		Tensor to Principal Axis	265			
		8.7.1 Time-Dependent Simple Shear	268			
		8.7.2 Multidimensional Time-Dependent				
		Incompressible (Isochoric) Extension	271			
	Refer	rences	273			
9	Large	e Deformations of Polymers	275			
	9.1	Stress-Strain Behavior of Polymeric Materials	275			
	9.2	Rheological Equation of State for Isotropic Elastic				
		Materials	280			
	9.3	Rheological Equation of State for the Ideal Rubber	284			
	9.4	Statistical Theory of Rubber Elasticity				
	Refer	rences	295			
10	Equa	Equations of State for Polymer Melts				
	10.1	Introduction	297			
	10.2	Rheological Equation of State for the Elastic Liquid				
		After Lodge	298			
		10.2.1 The Constitutive Equation	298			
		10.2.2 The Lodge Liquid in Time-Dependent				
		Simple Shear	301			
		10.2.3 The Lodge Liquid in a Stressing Experiment				
		in Simple Shear	302			
		10.2.4 The Lodge Liquid in Shear Creep and Creep				
		Pecovery	205			

xii Contents

		10.2.5	The Lodge Liquid in Harmonic Oscillation	
			in Simple Shear	307
		10.2.6	The Calculation of the Relaxation Spectrum from	
			Dynamic Data	310
		10.2.7	Calculation of the Retardation Spectrum from	
			the Relaxation Spectrum	314
		10.2.8	The Lodge Liquid in Isochorous Multidimensional	
			Extension	319
	10.3	Rheolo	gical Equations of State After Wagner	324
		10.3.1	The Constitutive Equation	324
		10.3.2	The Wagner Theories in Time-Dependent	
			Simple Shear	326
		10.3.3	The Wagner Theories for Uniaxial Extension	332
	10.4	The Th	neory of the Temporary Entanglement Network	336
		10.4.1	The Strain Tensor and the Molecular Orientation	336
		10.4.2	The Temporary Entanglement Network with	
			and Without Slip	338
	10.5	The Do	oi-Edwards Theory	343
		10.5.1	The Constitutive Equations of the Doi-Edwards Theory	343
		10.5.2	The Doi-Edwards Theory 2 for Simple Shear	
			and Multiaxial Extension	347
	10.6	Theory	of the Molecular Stress Function (MSF)	352
		10.6.1	The Constitutive Equation of the MSF-Theory	352
		10.6.2	The MSF Theory for Simple Shear and Multiaxial	
			Extension	354
		Append	dix A: The Averages $\langle (u') \rangle$ and $\langle (\ln u') \rangle$	
		and the	Components of the Strain Tensor	358
	Refer	ences .		362
11	Shear	r Rheolo	ogy	363
	11.1	Experi	ments at Constant Shear Rate	
		(Stress	ing Experiments)	364
	11.2	Relatio	n Between the Time and Shear-Rate Dependence	
		of the	Viscosity	367
	11.3	Dynam	nic-Mechanical Experiments	368
		11.3.1	Relations Between Dynamic-Mechanical	
			and Stressing Experiments (Cox-Merz Rule)	370
		11.3.2	Van Gurp-Palmen Plot	372
		11.3.3	Large Amplitude Oscillations (LAOS)	373
	11.4	Creep	Recovery Experiments	373
		11.4.1	Comparison of Creep Recovery with	
			Dynamic-Mechanical Experiments	377

Contents xiii

	11.5	Capilla	ry Rheometry	378
		11.5.1	Viscosity Functions	379
		11.5.2	Numerical Descriptions of Viscosity Functions	380
		11.5.3	Entrance Pressure Loss	382
		11.5.4	Extrudate Swell	383
	Refer	ences		386
	_			
12			Rheology	387
	12.1		of Uniaxial Extension	387
	12.2		kial Extensions	389
	12.3	-	mental Devices for Uniaxial Extension	392
		12.3.1	Elongational Rheometer After Meissner	393
		12.3.2	Rheometrics Extensional Rheometer	395
		12.3.3	Sentmanat Extensional Rheometer	396
		12.3.4	Filament Stretching Rheometer	397
		12.3.5	Tensile Rheometer After Münstedt	398
	12.4	-	mental Devices for Multiaxial Extension	400
		12.4.1	Hachmann-Meissner Rheometer	401
		12.4.2	Lubricated Squeeze-Flow Rheometer	401
	12.5		mental Features of Uniaxial Flow	402
		12.5.1	Comparison of Basic Experiments at Constant	
			Elongational Rate or Tensile Stress	402
		12.5.2	Dependence of the Elongational Viscosity	
			on Elongational Rate	407
		12.5.3	Dependence of the Recoverable Tensile Compliance	
			on Stress	409
		12.5.4	Temperature Dependence	410
	12.6		rison of Uniaxial and Multiaxial Extensions	413
	12.7		f the Uniformity of Sample Deformation for	
		the Acc	curacy of Extensional Experiments	415
	Refer	rences .		417
13	Dhoo	logical I	Properties and Molecular Structure	419
IJ	13.1		s Properties of Polymer Melts	420
	13.1	13.1.1	Viscosity Functions in Dependence on Molecular	720
		15.1.1	Structure	420
		12 1 2		425
		13.1.2	Zero-Shear Viscosities.	425
		13.1.3	Analysis of Long-Chain Branched Polypropylenes	429
	12.0	Electi-	Using $\eta_0(M_w)$	
	13.2		Properties	432 432
		13.2.1	Quantities Reflecting Elasticity	432
		13.2.2	Extrudate Swell in Dependence on Molecular	420
		12.2.2	Structure Steady-State Linear Recoverable Compliance	432
		-1323	Nieggy-Nigte Linear Recoverable Compliance	411

xiv Contents

		13.2.4	Recoverable Compliances at Higher Stresses	440		
		13.2.5	Conclusions on the Relationships Between			
			Elasticity in Shear and Molecular Structure	441		
	13.3	Elonga	tional Properties of Polymer Melts	442		
		13.3.1	Influence of Molar Mass and Molar Mass			
			Distribution	442		
		13.3.2	Influence of Long-Chain Branches	445		
		13.3.3	Conclusions on the Relationships Between			
			Elongational Viscosity and Molecular Structure	451		
	Refer	ences .		452		
14	Thermorheological Behavior of Various Polymer Melts					
	14.1	Amorp	hous Polymers	453		
	14.2	Semicr	ystalline Polymers	456		
		14.2.1	Thermorheological Simplicity and Its Application			
			to the Analysis of Short-Chain Branching	457		
		14.2.2	Thermorheological Complexity and Its Potential			
			for the Analysis of Branching	461		
		14.2.3	Interpretation and Determination of the Vertical			
			Shift Factor	464		
	Refer	ences .		467		
15	Rheometry					
	15.1	Capilla	ry Rheometry	469		
		15.1.1		470		
		15.1.2	Velocity Profiles	475		
		15.1.3	Viscosity Functions and Bagley-Correction	476		
	15.2	Slit Rh	eometry	479		
	15.3	Rotatio	nal Rheometry	482		
		15.3.1	Plate-Plate Rheometer	482		
		15.3.2	Cone-and-Plate Rheometer	488		
	Refer	ences .		494		
16	Measurements of Flow Fields of Polymer Melts					
	by Laser-Doppler Velocimetry					
	16.1	Motiva	tion	495		
	16.2	Measu	ring Principle and Setup of a Slit Die	496		
		16.2.1	Measuring Principle of Laser-Doppler			
			Velocimetry	496		
		16.2.2	Experimental Setup of a Slit Die	498		
	16.3	Flow F	fields in Different Sections of the Slit Die	499		
		16.3.1	Entrance Flow	500		
		1632	Flow Inside the Slit Capillary	500		

Contents xv

		16.3.3	Stick-Slip Phenomena Investigated	
			by Laser-Doppler Velocimetry	512
		16.3.4	Flow at the Die Exit	521
	Refer	ences		526
17	Rheo	logical F	Properties and Processing	527
	17.1	Melt Fl	ow Rate	527
	17.2	Role of	Viscosity Functions	528
	17.3	Influen	ce of Additives on the Surface	
		Defect	"Shark Skin"	529
	17.4	Flow P	rofiles Inside a Flat Die for Film Casting	533
		17.4.1	Motivation	533
		17.4.2	Experimental Device	534
		17.4.3	Flow Profiles	535
	17.5	Role of	Elongational Viscosity for Processing	538
		17.5.1	General Considerations	538
		17.5.2	Uniformity of the Elongation of Samples	
			with Different Strain Hardening	538
		17.5.3	Uniformity of Films Blown from Two Polyethylenes	
			with Different Strain Hardening	542
		17.5.4	Elongational Viscosity and Foaming	544
	Refe	rences .		547
Sul	bject I	ndex		549