Contents

1	Introduction						
	Refe	rences		2			
2	Graphene—Two-Dimensional Crystal						
	2.1	Introd	uction to Graphene	3			
	2.2	Fabric	eation of Graphene	11			
		2.2.1	Mechanical Exfoliation	11			
		2.2.2	Chemical Vapor Decomposition	12			
		2.2.3	Thermal Decomposition of SiC	12			
		2.2.4	Reduction of Graphite Oxide (GO)	13			
	2.3	<u>-</u>					
	2.4		onic Band Structure of Graphene	14			
		2.4.1	Tight-Binding Model	14			
		2.4.2	Effective Mass Approximation, Dirac Fermions				
			and Berry's Phase	18			
		2.4.3	Chirality and Absence of Backscattering	21			
		2.4.4	Bilayer Graphene	22			
	Refe			24			
		7000					
3	Gra	phene 1	Nanostructures and Quantum Dots	29			
	3.1	•					
	3.2						
	3.3		Quantization Effects	32 35			
		References					
4	Sing	de-Part	ticle Properties of Graphene Quantum Dots	39			
•	4.1 Size, Shape and Edge Dependence of Single Particle						
		Spectrum					
		4.1.1	One-Band Empirical Tight-Binding Model	39 39			
		4.1.2	Effective Mass Model of Graphene Quantum Dots	46			
			Titoria in in in the control of Cinhamic Samirani Dom	.0			

viii Contents

		4.1.3	Graphene Quantum Dots in a Magnetic Field		
			in the Effective Mass Approximation	49	
	4.2	Spin-C	Orbit Coupling in Graphene Quantum Dots	53	
		4.2.1	Four-Band Tight-Binding Model	55	
		4.2.2	Inclusion of Spin-Orbit Coupling into Four-Band		
			Tight-Binding Model	56	
		4.2.3	Kane-Mele Hamiltonian and Quantum Spin Hall		
			Effect in Nanoribbons	58	
	4.3	Triang	gular Graphene Quantum Dots with Zigzag Edges	62	
		4.3.1	Energy Spectrum	62	
		4.3.2	Analytical Solution for Zero-Energy States	63	
		4.3.3	Zero-Energy States in a Magnetic Field	68	
		4.3.4	Classification of States with Respect		
			to Irreducible Representations of $C_{3\nu}$		
			Symmetry Group	68	
		4.3.5	The Effect of Spin-Orbit Coupling	76	
	4.4	Bilaye	er Triangular Graphene Quantum Dots		
		with 2	Zigzag Edges	77	
	4.5	Triang	gular Mesoscopic Quantum Rings with Zigzag Edges	79	
		4.5.1	Energy Spectrum	80	
	4.6	Hexag	gonal Mesoscopic Quantum Rings	81	
		4.6.1	Energy Spectrum	82	
	4.7	Nanor	ribbon Rings	86	
		4.7.1	Möbius and Cyclic Nanoribbon Rings	87	
	Refe	rences		89	
5	Elec	tron–E	lectron Interactions in Graphene Quantum Dots	91	
	5.1	Introd	uction	91	
	5.2	Many-Body Hamiltonian			
	5.3	Two Body Scattering—Coulomb Matrix Elements			
	5.4	Mean-Field Hartree-Fock Approximation			
		5.4.1	Hartree-Fock State in Graphene Quantum Dots	96	
		5.4.2	Semimetal-Mott Insulator Transition in Graphene		
			Quantum Dots	99	
		5.4.3	Hubbard Model—Mean-Field Approximation	100	
	5.5	Ab In	ito Density Functional Approach	101	
	5.6	Configuration Interaction Method			
		5.6.1	Many-Body Configurations	103	
		5.6.2	Diagonalization Methods for Large Matrices	106	
	5.7	TB+H	IF+CI Method	107	
	Refe	rences		108	

Contents ix

0	Mag		roperties of Gated Graphene Nanostructures	111		
	6.1	Triang	gular Graphene Quantum Dots with Zigzag Edges	111		
		6.1.1	Filling Factor Dependence of the Total Spin			
		(10	of TGQD	111		
		6.1.2	Size Dependence of Magnetic Properties of TGQD:	114		
		(12	Excitons, Trions and Lieb's Theorem	114		
		6.1.3	Pair-Correlation Function of Spin Depolarized States	119		
		6.1.4	Coulomb and Spin Blockades in TGQD	120		
		6.1.5	Comparison of Hubbard, Extended Hubbard			
			and Full CI Results	122		
		6.1.6	Edge Stability from Ab Initio Methods	125		
	6.2		er Triangular Graphene Quantum Dots			
			Zigzag Edges	130		
	6.3	_	gular Mesoscopic Quantum Rings with Zigzag Edges	132		
		6.3.1	Properties of the Charge-Neutral TGQR	133		
		6.3.2	Filling Factor Dependence of Mesoscopic TGQRs	136		
	6.4	Hexag	gonal Mesoscopic Quantum Rings	138		
		6.4.1	Dependence of Magnetic Moment in Hexagonal			
			GQRs on Size	138		
		6.4.2	Analysis as a Function of Filling Factor	140		
	6.5	Nanor	ibbon Rings	140		
	Refe	ferences				
7	Opt	ical Pro	operties of Graphene Nanostructures	145		
	7.1		Shape and Type of Edge Dependence			
			Energy Gap	145		
	7.2		al Joint Density of States	147		
	7.3		gular Graphene Quantum Dots With Zigzag Edges	149		
	, ,,	7.3.1	Excitons in Graphene Quantum Dots	149		
		7.3.2	Charged Excitons in Interacting Charged			
		7.5.2	Quantum Dots	152		
		7.3.3	Terahertz Spectroscopy of Degenerate Shell	152		
	7.4		al Spin Blockade and Optical Control of Magnetic	132		
	7.4		ent in Graphene Quantum Dots	154		
	7.5		al Properties of Colloidal Graphene Quantum Dots	159		
	1.5	7.5.1	Optical Selection Rules for Triangular Graphene	15		
		7.5.1	Quantum Dots	159		
		7.5.2	Band-edge Exciton	162		
		7.5.2		164		
			Low-Energy Absorption Spectrum			
		7.5.4	Effects of Screening κ and Tunneling t	164		
	ъ.	7.5.5	Comparison With Experiment	167		
	Kete	erences		168		
In	dex			169		