Contents

Con	struction	of Liouvillian Classes of Functions	
and	Liouville	e's Theory	1
1.1	Defini	ng Classes of Functions by Lists of Basic	
	Function	ons and Admissible Operations	2
1.2		Ilian Classes of Functions of a Single Variable	3
	1.2.1	Functions of One Variable Representable	
		by Radicals	3
	1.2.2	Elementary Functions of One Variable	5
	1.2.3	Functions of One Variable Representable	
		by Quadrature	5
1.3	A Bit o	of History	6
1.4		Definitions of Liouvillian Classes of Functions	7
	1.4.1	Elementary Functions of One Variable	7
	1.4.2	Functions of One Variable Representable	
		by Quadratures	8
	1.4.3	Generalized Elementary Functions of One	
		Variable and Functions of One Variable	
		Representable by Generalized Quadratures	
		and k-Quadratures	8
1.5	Liouvi	ille Extensions of Abstract and Functional	
	Differe	ential Fields	10
1.6	Integra	ation of Elementary Functions	13
	1.6.1	Liouville's Theorem: Outline of a Proof	15
	1.6.2	Refinement of Liouville's Theorem	16
	1.6.3	Algebraic Extensions of Differential Fields	17
	1.6.4	Extensions of Transcendence Degree One	18
	1.6.5	Adjunction of an Integral and an Exponential	
		of Integral	21
	1.6.6	Proof of Liouville's Theorem	22

xii Contents

	1.7	Integra	tion of Functions Containing the Logarithm	25			
		1.7.1	The Polar Part of an Integral	25			
		1.7.2	The Logarithmic Derivative Part	26			
		1.7.3	Integration of a Polynomial of a Logarithm	27			
		1.7.4	Integration of Functions Lying in a Logarithmic				
			Extension of the Field $\mathbb{C}\langle z\rangle$	28			
	1.8	Integra	tion of Functions Containing an Exponential	29			
		1.8.1	Principal Polar Part of the Integral	29			
		1.8.2	Principal Logarithmic Derivative Part	30			
		1.8.3	Integration of Laurent Polynomials of the Exponential	32			
		1.8.4	Solvability of First-Order Linear Differential Equations	32			
		1.8.5	Integration of Functions Lying				
			in an Exponential Extension of the Field $\mathbb{C}\langle z \rangle$	35			
	1.9	Integra	ation of Algebraic Functions	35			
		1.9.1	The Rational Part of an Abelian Integral	36			
		1.9.2	Logarithmic Part of an Abelian Integral	38			
		1.9.3	Elementarity and Nonelementarity of Abelian Integrals	41			
	1.10		ouville-Mordukhai-Boltovski Criterion	44			
2			f Algebraic Equations by Radicals and Galois Theory	47			
	2.1		of a Solvable Group and Representability by Radicals	49			
		2.1.1	A Sufficient Condition for Solvability by Radicals	49			
		2.1.2	The Permutation Group of the Variables				
			and Equations of Degree 2, 3, and 4	51			
		2.1.3	Lagrange Polynomials and Abelian				
			Linear-Algebraic Groups	52			
		2.1.4	Solving Equations of Degrees 2, 3, and 4 by Radicals	55 58			
	2.2	2.2 Fixed Points of Finite Group Actions					
	2.3	Field A	Automorphisms and Relations Between Elements				
		in a Fi	eld	61			
		2.3.1	Equations Without Multiple Roots	61			
		2.3.2	Algebraicity over an Invariant Subfield	61			
		2.3.3	Subalgebras Containing the Coefficients				
			of a Lagrange Polynomial	62			
		2.3.4	Representability of One Element Through				
			Another Element over an Invariant Subfield	63			
	2.4	Action	of a k-Solvable Group and Representability				
			Radicals	64			
	2.5	-	Equations	65			
	2.6	Automorphisms Related to a Galois Equation					
	2.7		undamental Theorem of Galois Theory	67 68			
		2.7.1	Galois Extensions	68			
		2.7.2	Galois Groups	69			
		2.7.3	The Fundamental Theorem	70			
		2.7.4	Properties of the Galois Correspondence	70			
		2.7.5	Changing the Field of Coefficients	72			
		2.1.5	Changing the rivid of Coefficients	, 2			

Contents xiii

	2.8	A Crite	rion for Solvability of Equations by Radicals	73		
		2.8.1	Roots of Unity	73		
		2.8.2	The Equation $x^n = a$	74		
		2.8.3	Solvability by Radicals	75		
	2.9	A Crite	rion for Solvability by k-Radicals	76		
		2.9.1	Properties of k-Solvable Groups	76		
		2.9.2	Solvability by k-Radicals	78		
		2.9.3	Unsolvability of the General Equation			
			of Degree $k + 1 > 4$ by k -Radicals	79		
	2.10	Unsolv	ability of Complicated Equations by Solving			
			r Equations	81		
		2.10.1	A Necessary Condition for Solvability	81		
		2.10.2	Classes of Finite Groups	82		
			•			
3			nd Picard-Vessiot Theory	85		
	3.1		ity Between Linear Differential Equations			
		and Alg	gebraic Equations	85		
		3.1.1	Division with Remainder and the Greatest			
			Common Divisor of Differential Operators	85		
		3.1.2	Reduction of Order for a Linear Differential			
			Equation as an Analogue of Bézout's Theorem	86		
		3.1.3	A Generic Linear Differential Equation			
			with Constant Coefficients and Lagrange Resolvents	87		
		3.1.4	Analogue of Viete's Formulas for Differential			
			Operators	88		
		3.1.5	An Analogue of the Theorem on Symmetric			
			Functions for Differential Operators	90		
	3.2	A Picar	d-Vessiot Extension and Its Galois Group	91		
	3.3	The Fundamental Theorem of Picard-Vessiot Theory				
	3.4	The Simplest Picard–Vessiot Extensions				
		3.4.1	Algebraic Extensions	94 94		
		3.4.2	Adjoining an Integral	95		
		3.4.3	Adjoining an Exponential of Integral	96		
	3.5		ility of Differential Equations	98		
	3.6		Algebraic Groups and Necessary Conditions	•		
	.,.0		ability	99		
	3.7		cient Condition for the Solvability of Differential			
	-/	Equation	•	10		
	3.8		Kinds of Solvability	104		
4	Cava	rings s-	d Calais Theory	107		
4			d Galois Theory			
	4.1		ngs over Topological Spaces	109		
		4.1.1	Classification of Coverings with Marked Points	109		
		4.1.2	Coverings with Marked Points and Subgroups	11		
			of the Fundamental Group	11		
		4.1.3	Other Classifications of Coverings	114		

xiv Contents

		4.1.4	A Similarity Between Galois Theory	
			and the Classification of Coverings	117
	4.2	Comple	etion of Ramified Coverings and Riemann	
		Surface	es of Algebraic Functions	118
		4.2.1	Filling Holes and Puiseux Expansions	119
		4.2.2	Analytic-Type Maps and the Real Operation	
			of Filling Holes	121
		4.2.3	Finite Ramified Coverings with a Fixed	
			Ramification Set	123
		4.2.4	The Riemann Surface of an Algebraic Equation	
			over the Field of Meromorphic Functions	128
	4.3	Finite l	Ramified Coverings and Algebraic Extensions	
		of Field	ds of Meromorphic Functions	130
		4.3.1	The Field $P_a(O)$ of Germs at the Point $a \in X$	
			of Algebraic Functions with Ramification over O	130
		4.3.2	Galois Theory for the Action of the	
			Fundamental Group on the Field $P_a(O)$	132
		4.3.3	Field of Functions on a Ramified Covering	134
	4.4		etry of Galois Theory for Extensions of the Field	
		of Mer	omorphic Functions	136
		4.4.1	Galois Extensions of the Field $K(X)$	136
		4.4.2	Algebraic Extensions of the Field	
			of Germs of Meromorphic Functions	137
		4.4.3	Algebraic Extensions of the Field of Rational	
			Functions	138
5	One-	Dimensi	ional Topological Galois Theory	143
	5.1		pological Unsolvability	144
	5.2		gical Nonrepresentability of Functions by Radicals	147
		5.2.1	Monodromy Groups of Basic Functions	148
		5.2.2	Solvable Groups	149
		5.2.3	The Class of Algebraic Functions with	
			Solvable Monodromy Groups Is Stable	149
		5.2.4	An Algebraic Function with a Solvable	
			Monodromy Group Is Representable by Radicals	151
	5.3	On the	One-Dimensional Version of Topological Galois Theory	152
	5.4	Function	ons with at Most Countable Singular Sets	153
		5.4.1	Forbidden Sets	154
		5.4.2	The Class of \mathscr{S} -Functions Is Stable	155
	5.5	Monoc	dromy Groups	157
		5.5.1	Monodromy Group with a Forbidden Set	157
		5.5.2	Closed Monodromy Groups	158
		5.5.3	Transitive Action of a Group on a Set	
			and the Monodromy Pair of an \mathscr{S} -Function	158

Contents

		5.5.4	Almost Normal Functions	159			
		5.5.5	Classes of Group Pairs	160			
	5.6		ain Theorem	161			
	5.7	-	Theoretic Obstructions to Representability				
		by Qua	draturesdratures	164			
		5.7.1	Computation of Some Classes of Group Pairs	164			
		5.7.2	Necessary Conditions for Representability				
			by Quadratures, k-Quadratures,				
			and Generalized Quadratures	167			
	5.8		s of Singular Sets and a Generalization				
		of the N	Main Theorem	170			
		5.8.1	Functions Representable by Single-Valued				
			X ₁ -Functions and Quadratures	171			
6	Solva	bility of	Fuchsian Equations	173			
	6.1		-Vessiot Theory for Fuchsian Equations	173			
		6.1.1	The Monodromy Group of a Linear Differential				
			Equation and Its Connection with the Galois Group	173			
		6.1.2	Proof of Frobenius's Theorem	176			
		6.1.3	The Monodromy Group of Systems of Linear				
			Differential Equations and Its Connection with				
			the Galois Group	178			
	6.2	Galois	Theory for Fuchsian Systems of Linear				
			ential Equations with Small Coefficients	180			
		6.2.1	Fuchsian Systems of Equations	180			
		6.2.2	Groups Generated by Matrices Close to the Identity	182			
		6.2.3	Explicit Criteria for Solvability	185			
		6.2.4	Strong Unsolvability of Equations	187			
	6.3	Maps o	of the Half-Plane onto Polygons Bounded				
		_	cular Arcs	188			
		6.3.1	Using the Reflection Principle	188			
		6.3.2	Groups of Fractional Linear and Conformal				
			Transformations of the Class $\mathcal{M}(\mathbb{C}, \mathcal{K})$	189			
		6.3.3	Integrable Cases	191			
7	Mult						
•	7.1		action	195 195			
		7.1.1	Operations on Multivariate Functions	196			
		7.1.2	Liouvillian Classes of Multivariate Functions	197			
		7.1.3	New Definitions of Liouvillian Classes				
			of Multivariate Functions	200			
		7.1.4	Liouville Extensions of Differential Fields				
			Consisting of Multivariate Functions	202			

xvi Contents

	7.2	Continu	uation of Multivalued Analytic Functions	
		to an A	nalytic Subset	204
		7.2.1	Continuation of a Single-Valued Analytic	
			Function to an Analytic Subset	206
		7.2.2	Admissible Stratifications	207
		7.2.3	How the Topology of an Analytic Subset	
			Changes at an Irreducible Component	208
		7.2.4	Covers Over the Complement of a Subset	
			of Hausdorff Codimension Greater Than 1	
			in a Manifold	210
		7.2.5	Covers Over the Complement of an Analytic Set	213
		7.2.6	The Main Theorem	215
	7.3	On the	Monodromy of a Multivalued Function	
		on Its F	Ramification Set	216
		7.3.1	S-Functions	217
		7.3.2	Almost Homomorphisms and Induced Closures	219
		7.3.3	Induced Closure of a Group Acting on a Set	
			in the Transformation Group of a Subset	221
		7.3.4	The Monodromy Groups of Induced Functions	222
		7.3.5	Classes of Group Pairs	224
	7.4	Multidi	imensional Results on Nonrepresentability	
			ctions by Quadratures	226
		7.4.1	Formulas, Their Multigerms, Analytic	
			Continuations, and Riemann Surfaces	227
		7.4.2	The Class of Se-Germs, Its Stability Under	
			the Natural Operations	229
		7.4.3	The Class of Formula Multigerms	
			with the \mathcal{SC} -Property	233
		7.4.4	Topological Obstructions to Representability	
			of Functions by Quadratures	234
		7.4.5	Monodromy Groups of Holonomic Systems	
			of Linear Differential Equations	236
		7.4.6	Holonomic Systems of Linear Differential	
			Equations with Small Coefficients	237
			•	
A	Strai		and Compass Constructions	239
	A.1	Solvab	ility of Equations by Square Roots	240
		A.1.1	Background Material	24
		A.1.2	Extensions by 2-Radicals	24
		A.1.3	2-Radical Extensions of a Field	
			of Characteristic 2	243
		A.1.4	Roots of Unity	243
		A.1.5	Solvability of the Equation $x^n - 1 = 0$ by 2-Radicals	245
	A.2	What C	Can Be Constructed Using Straightedge and Compass?	246
		A.2.1	The Unsolvability of Some Straightedge and	
			Compass Construction Problems	247

Contents xvii

		A.2.2	Some Explicit Constructions	248		
		A.2.3	Classical Straightedge and Compass			
			Constructibility Problems	250		
		A.2.4	Two Specific Constructions	251		
		A.2.5	Stratification of the Plane	252		
		A.2.6	Classes of Constructions That Allow Arbitrary Choice	253		
		A.2.7	Trisection of an Angle	254		
		A.2.8	A Theorem from Affine Geometry	256		
В	Chebyshev Polynomials and Their Inverses					
	B.1		shev Functions over the Complex Numbers	258		
		B.1.1	Multivalued Chebyshev Functions	258		
		B.1.2	Germs of a Chebyshev Function at the Point			
			$x = 1 \dots$	260		
		B.1.3	Analytic Continuation of Germs	261		
	B.2	Chebys	shev Functions over Fields	262		
		B.2.1	Algebraic Definition	262		
		B.2.2	Equations of Degree Three	263		
		B.2.3	Equations of Degree Four	264		
	B.3	Three (Classical Problems	265		
		B.3.1	Inversion of Mappings in Radicals	265		
		B.3.2	Inversion of Mappings of Finite Fields	267		
		B.3.3	Integrable Mappings	268		
C	Signa	atures of	Branched Coverings and Solvability in Quadratures	271		
	C.I	Coveri	ngs with a Given Signature	272		
		C.1.1	Definitions and Examples	272		
		C.1.2	Classification	273		
		C.1.3	Coverings and Classical Geometries	274		
	C.2	The Sp	pherical Case	276		
		C.2.1	Application of the Riemann-Hurwitz Formula	276		
		C.2.2	Finite Groups of Rotations of the Sphere	277		
		C.2.3	Coverings with Elliptic Signatures	278		
		C.2.4	Equations with an Elliptic Signature	278		
	C.3	The Ca	ase of the Plane	278		
		C.3.1	Discrete Groups of Affine Transformations	278		
		C.3.2	Affine Groups Generated by Reflections	280		
		C.3.3	Coverings with Parabolic Signatures	280		
		C.3.4	Equations with Parabolic Signatures	28		
	C.4	Function	ons with Nonhyperbolic Signatures in Other Contexts			
	C.5	The H	vperbolic Case	284		

xviii Contents

D	On a	n Algebr	raic Version of Hilbert's 13th Problem	287
	D.1	Version	s of Hilbert's 13th Problem	287
		D.1.1	Simplification of Equations of High Degree	287
		D.1.2	Versions of the Problem for Different	
			Classes of Functions	288
	D.2	Arnold	's Theorem	289
		D.2.1	Formulation of the Theorem	289
		D.2.2	Results Related to Arnold's Theorem	290
		D.2.3	The Proof of the Theorem	291
		D.2.4	Polynomial Versions of Klein's and Hilbert's Problems	293
	D.3	Klein's	Problem	293
		D.3.1	Birational Automorphisms and Klein's Problem	293
		D.3.2	Essential Dimension of Groups	295
		D.3.3	A Topological Approach to Klein's Problem	296
	D.4	Arnold	's Proof and Further Developments in Klein's Problem	297
Re	ferenc	es		299
In	dex			305