Contents

1	Mod	elling Bi	ological Neurons in Terms of Electrical Circuits	1	
	1.1	The Hodgkin-Huxley Equations		1	
		1.1.1	Nernst's Equation	3	
		1.1.2	The Goldman-Hodgkin-Katz Equation	4	
	1.2	Equiva	alent Circuits of the Cell's Membrane	5	
		1.2.1	The Electric Equivalent	5	
		1.2.2	Membrane's Time Constant	8	
	1.3	Descri	bing Membrane's Voltage Dynamics		
		with C	able's Equation	9	
	1.4	The He	odgkin-Huxley Model	12	
		1.4.1	Derivation of the Hodgkin-Huxley Model	12	
		1.4.2	Outline of the Hodgkin-Huxley Equations	13	
	1.5	The Fi	tzHugh-Nagumo Model of Neurons	14	
	1.6	The Morris-Lecar Model of Neurons 14			
	1.7	Model	ling Dendrites in Terms of Electrical Circuits	16	
		1.7.1	Dendrites	16	
		1.7.2	Computing Cable's Equation in Neurons	18	
		1.7.3	The Infinite Length Cable	19	
	1.8	Ion Ch	nannels and Their Characteristics	20	
		1.8.1	Types of Ion Channels	20	
		1.8.2	Sodium Channels Na ⁺	22	
		1.8.3	Calcium Channels Ca ²⁺	22	
		1.8.4	Voltage-Gated Potassium Channels K ⁺	23	
		1.8.5	Voltage Sags	24	
		1.8.6	Currents and Concentration of Ions	24	
		1.8.7	Calcium-Dependent Channels	25	
	1.9	Conclu	usions	26	

xvi Contents

2	Syste		ory for the Analysis of Biological Neuron Dynamics	27
	2.1		eteristics of the Dynamics of Nonlinear Systems	27
	2.2		itation of Isoclines	32
	2.3	System	ns Theory and Neurodynamics	34
		2.3.1	The Phase Diagram	34
		2.3.2	Stability Analysis of Nonlinear Systems	34
		2.3.3	Stability Analysis of the Morris-Lecar	
			Nonlinear Model	37
	2.4	Phase 1	Diagrams and Equilibria of Neuronal Models	38
		2.4.1	Phase Diagrams for Linear Dynamical Systems	38
		2.4.2	Multiple Equilibria for Nonlinear Dynamical Systems	40
		2.4.3	Limit Cycles	44
	2.5	Bifurca	ations in Neuronal Dynamics	46
		2.5.1	Bifurcations of Fixed Points of Biological	
			Neuron Models	46
		2.5.2	Saddle-Node Bifurcations of Fixed Points	
			in a One-Dimensional System	46
		2.5.3	Pitchfork Bifurcation of Fixed Points	47
		2.5.4	The Hopf Bifurcation	49
	2.6		in Neurons	5
		2.6.1	Chaotic Dynamics in Neurons	51
		2.6.2	Chaotic Dynamics in Associative Memories	51
	2.7		usions	5
3	Bifu	rcations	and Limit Cycles in Models of Biological Systems	53
	3.1	Outline	e	53
	3.2	Genera	alization of the Routh-Hurwitz Criterion	
		with K	Charitonov's Theorem	55
		3.2.1	Application of the Routh Criterion to Systems	
			with Parametric Uncertainty	5:
		3.2.2	An Application Example	50
	3.3	Stages	in Bifurcations Analysis	5′
	3.4		ation Analysis of the FitzHugh-Nagumo Neuron	58
		3.4.1	Equilibria and Stability	
			of the FitzHugh-Nagumo Neuron	58
		3.4.2	Condition for the Appearance of Limit Cycles	60
	3.5	Bifurc	ation Analysis of Circadian Oscillators	6
	2.0	3.5.1	Fixed Points Bifurcation Analysis Using	_
		5.5.1	Kharitonov's Theory	6
		3.5.2	Method to Detect Hopf Bifurcations	•
		J.J.L	in the Circadian Cells	6
	3.6	Feedh	ack Control of Bifurcations	6
	3.7		ation Tests	7
	3.7		usions	_
	٠.٠	CORCI	UJIVIIJ	, ,

Contents xvii

4	Oscill	latory D	ynamics in Biological Neurons	75
	4.1	Neural	Oscillators	75
	4.2	Synapti	c Channels	77
	4.3	Dynam	ics of the Synapses	78
	4.4	Study o	of the Glutamate Neurotransmitter	80
	4.5		of the GABA Neurotransmitter	81
	4.6		and Long-Term Plasticity	82
	4.7	Synchronization of Coupled FitzHugh-Nagumo		
		Neurons Using Differential Flatness Theory		83
		4.7.1	The Problem of Synchronization of Coupled	
			Neural Oscillators	83
		4.7.2	Coupled Neural Oscillators as Coordinators	
			of Motion	85
	4.8	Differe	ntial Flatness Theory	86
		4.8.1	Definition of Differentially Flat Systems	86
		4.8.2	Conditions for Applying Differential Flatness Theory	87
		4.8.3	Transformation of the Neurons' Model into	
			the Linear Canonical Form	88
	4.9	Lineari	zation of the FitzHugh-Nagumo Neuron	89
		4.9.1	Linearization of the FitzHugh-Nagumo	
			Model Using a Differential Geometric Approach	89
		4.9.2	Linearization of the FitzHugh-Nagumo	
			Model Using Differential Flatness Theory	91
	4.10 Linearization of Coupled FitzHugh-Nagumo Neurons		zation of Coupled FitzHugh–Nagumo Neurons	
			Differential Geometry	92
	4.11	Lineari	zation of Coupled FitzHugh-Nagumo Neurons	
		Using I	Differential Flatness Theory	96
		4.11.1	Differential Flatness of the Model	
			of the Coupled Neurons	96
		4.11.2	Linearization of the Coupled Neurons Using	
			Differential Flatness Theory	97
	4.12	State and Disturbances Estimation		
		with th	e Derivative-Free Nonlinear Kalman Filter	98
		4.12.1	Kalman and Extended Kalman Filtering	98
		4.12.2	Design of a Disturbance Observer	
			for the Model of the Coupled Neurons	100
		4.12.3	Disturbances Compensation for the Model	
			of the Coupled Neurons	102
	4.13	Simula	tion Tests	102
	4 1 4	Conclu	nione.	104

xviii Contents

5	Synchronization of Circadian Neurons and Protein					
	Synt	esis Control 1	07			
	5.1	Overview	07			
	5.2	Modelling of Circadian Oscillators Dynamics	09			
		5.2.1 The Functioning of the Circadian Oscillators	09			
		5.2.2 Mathematical Model of the Circadian Oscillator 1	11			
	5.3	Protein Synthesis Control Using Differential Geometry				
		Methods 1	12			
	5.4		14			
		· · · · · · · · · · · · · · · · · · ·	14			
			15			
	5.5	Robust Synchronization of Coupled Circadian				
			18			
	5.6	Robust Synchronization of Coupled Circadian				
			20			
	5.7	State Estimation and Disturbances Compensation				
			24			
	5.8	Simulation Tests	26			
	5.9	Conclusions				
6	Wav	Dynamics in the Transmission of Neural Signals 1	31			
	6.1		31			
	6.2	Propagating Action Potentials				
	6.3	Dynamics of the Solution of the Wave PDE				
	6.4					
			35			
		6.4.2 Comparison Between the Hodgkin-Huxley				
			36			
	6.5		37			
	6.6	<u>•</u>				
			41			
			45			
	6.7	Conclusions	47			
7	Stochastic Models of Biological Neuron Dynamics					
	7.1		49			
	7.2		50			
		"	50			
		7.2.2 Wiener Walk and Wiener Process	51			
			52			
		7.2.4 The Wiener Process Corresponds				
		•	53			
			53			
			53			

Contents xix

	7.3	Fokker-Planck's Partial Differential Equation	154
		7.3.1 The Fokker–Planck Equation	154
		7.3.2 First Passage Time	155
		7.3.3 Meaning of the First Passage Time	155
	7.4	Stochastic Modelling of Ion Channels	156
	7.5	Fokker-Planck Equation and the Integrate-and-Fire	
		Neuron Model	157
		7.5.1 The Integrate-and-Fire Neuron Model	157
		7.5.2 Stochastic Integrate-and-Fire Neuron Model	
		and the Fokker-Planck Equation	160
		7.5.3 Rate of Firing for Neural Models	161
	7.6	Stochasticity in Neural Dynamics and Relation	
		to Quantum Mechanics	161
		7.6.1 Basics of Quantum Mechanics	161
		7.6.2 Schrödinger's Equation with Non-zero	
		Potential and Its Equivalence to Diffusion with Drift	163
		7.6.3 Study of the QHO Model Through	
		the Ornstein-Uhlenbeck Diffusion	164
		7.6.4 Particle's Motion Is a Generalization	
		of Gradient Algorithms	166
	7.7	Conclusions	167
8	Sync	hronization of Stochastic Neural Oscillators Using	
	Lyap	unov Methods	169
	8.1	Representation of the Neurons' Dynamics as Brownian	
		Motion	169
	8.2	Interacting Diffusing Particles as a Model of Neural Networks	171
		8.2.1 Weights' Equivalence to Brownian Particles	171
		8.2.2 Stability Analysis for a Neural Model	
		with Brownian Weights	173
	8.3	Convergence of the Stochastic Weights to an Equilibrium	178
	8.4	Conclusions	180
9	Sync	hronization of Chaotic and Stochastic Neurons Using	
		rential Flatness Theory	181
	9.1	Chaotic Neural Oscillators	181
	7.1	9.1.1 Models of Chaotic Oscillators	181
		9.1.2 Differential Flatness of Chaotic Oscillators	
	9.2	Stabilization of Interacting Particles Which	.02
	9.2	Are Modelled as Coupled Stochastic Oscillators	184
	9.3	Some Examples on Flatness-Based Control of Coupled	10.
	7.5	Oscillators	185
	9.4	Flatness-Based Control for the Multi-Particle System	187
	9.5	Simulation Tests	189
	7)	JIIIuiaiiui 10st3	107
	9.6	Conclusions	190

xx Contents

10	Attra		Associative Memories with Stochastic Weights	191			
	10.1	_	s Learning in Associative Memories Is a Wiener				
		Process	5	191			
		10.1.1	The Weights of Associative Memories Are				
			Equivalent to Brownian Particles	191			
		10.1.2	Mean Value and Variance of the Brownian Weights	193			
		10.1.3	Learning Through Unitary Quantum				
			Mechanical Operators	195			
	10.2	Attracte	ors in QHO-Based Associative Memories	196			
		10.2.1	Decomposition of the Weight Matrix				
			into a Superposition of Matrices	196			
		10.2.2	Evolution Between the Eigenvector Spaces				
			via Unitary Rotations	199			
		10.2.3	Applications of the Stochastic Associative				
			Memory Model	200			
	10.3		ors in Associative Memories with Stochastic Weights	200			
	10.4	Conclu	sions	206			
11	Speci	tral Ana	lysis of Neural Models with Stochastic Weights	207			
	11.1		ew	207			
	11.2		t Basis Functions	208			
		11.2.1	Wavelet Frames	208			
		11.2.2	Dyadic Grid Scaling and Orthonormal				
			Wavelet Transforms	209			
		11.2.3	The Scaling Function and the Multi-resolution				
			Representation	210			
		11.2.4	Examples of Orthonormal Wavelets	211			
		11.2.5	The Haar Wavelet	213			
	11.3		al Analysis of the Stochastic Weights	214			
		11.3.1	Spectral Analysis of Wavelets	214			
		11.3.2	Energy Spectrum of the Stochastic Weights	216			
		11.3.3	Stochastic weights and the Principle of Uncertainty	218			
	11.4		sions	219			
10							
12		Neural Networks Based on the Eigenstates of the Quantum Harmonic Oscillator					
				221			
	12.1 12.2		ew	221 222			
	12.3	č					
	12.4		Networks Based on the QHO Eigenstates	225			
		12.4.1	The Gauss-Hermite Series Expansion	225			
		12.4.2	Neural Networks Based on the Eigenstates	201			
			of the 2D Quantum Harmonic Oscillator	226			

Contents

xxi

273

	12.5	Uncerta	inty Principles for the QHO-Based Neural Networks	228
		12.5.1	Uncertainty Principles for Bases	
			and the Balian-Low Theorem	228
		12.5.2	Uncertainty Principles for Hermite Series	229
	12.6	Multisc	ale Modelling of Dynamical System	230
	12.7		tions to Image Compression	239
	12.8		itions to Fault Diagnosis	242
		12.8.1	Signals Power Spectrum and the Fourier Transform	242
		12.8.2	Power Spectrum of the Signal Using	
			the Gauss-Hermite Expansion	243
		12.8.3	Detection of Changes in the Spectral Content	
			of the System's Output	244
	12.9	Conclus	sions	247
13	Quan	tum Co	ntrol and Manipulation of Systems	
			s at Molecular Scale	251
	13.1		of Quantum Systems Control	251
	13.2		in as a Two-Level Quantum System	252
		13.2.1	Description of a Particle in Spin Coordinates	252
		13.2.2	Measurement Operators in the Spin State-Space	253
		13.2.3	The Spin Eigenstates Define a Two-Level	
			Quantum System	254
	13.3	The Lir	adblad and Belavkin Description of Quantum Systems	254
		13.3.1	The Lindblad Description of Quantum Systems	254
		13.3.2	The Belavkin Description of Quantum Systems	255
		13.3.3	Formulation of the Control Problem	256
	13.4	A Feed	back Control Approach for Quantum System	
		Stabiliz	ation	257
		13.4.1	Control Law Calculation Using Schrödinger's	
			Equation	257
		13.4.2	Control Law Calculation Using Lindblad's Equation	258
	13.5	Simulat	tion Tests	260
	13.6	Conclu	sions	262
Ref	erence	s		263