

Contents

1	Introduction	1
1.1	Definition of Three Basic Terms	1
1.2	Specialized Areas within Acoustics	3
1.3	About the History of Acoustics	4
1.4	Relevant Quantities in Acoustics	5
1.5	Some Numerical Examples	6
1.6	Levels and Logarithmic Frequency Intervals	8
1.7	Double-Logarithmic Plots	10
2	Mechanic and Acoustic Oscillations	13
2.1	Basic Elements of Linear, Oscillating, Mechanic Systems	14
2.2	Parallel Mechanic Oscillators	16
2.3	Free Oscillations of Parallel Mechanic Oscillators	17
2.4	Forced Oscillation of Parallel Mechanic Oscillators	19
2.5	Energies and Dissipation Losses	22
2.6	Basic Elements of Linear, Oscillating, Acoustic Systems	24
2.7	The <i>Helmholtz</i> Resonator	25
3	Electromechanic and Electroacoustic Analogies	27
3.1	The Electromechanic Analogies	28
3.2	The Electroacoustic Analogy	29
3.3	Levers and Transformers	29
3.4	Rules for Deriving Analogous Electric Circuits	31
3.5	Synopsis of Electric Analogies of Simple Oscillators	33
3.6	Circuit Fidelity, Impedance Fidelity and Duality	33
3.7	Examples of Mechanic and Acoustic Oscillators	34
4	Electromechanic and Electroacoustic Transduction	37
4.1	Electromechanic Couplers as Two- or Three-Port Elements	38
4.2	The Carbon Microphone – A Controlled Coupler	39
4.3	Fundamental Equations of Electroacoustic Transducers	40

VIII Contents

4.4	Reversibility	43
4.5	Coupling of Electroacoustic Transducers to the Sound Field	44
4.6	Pressure and Pressure-Gradient Receivers	46
4.7	Further Directional Characteristics	49
4.8	Absolute Calibration of Transducers	52
5	Magnetic-Field Transducers	55
5.1	The Magnetodynamic Transduction Principle	57
5.2	Magnetodynamic Sound Emitters and Receivers	59
5.3	The Electromagnetic Transduction Principle	65
5.4	Electromagnetic Sound Emitters and Receivers	67
5.5	The Magnetostrictive Transduction Principle	68
5.6	Magnetostrictive Sound Transmitters and Receivers	69
6	Electric-Field Transducers	71
6.1	The Piezoelectric Transduction Principle	71
6.2	Piezoelectric Sound Emitters and Receivers	74
6.3	The Electrostrictive Transduction Principle	78
6.4	Electrostrictive Sound Emitters and Receivers	79
6.5	The Dielectric Transduction Principle	80
6.6	Dielectric Sound Emitters and Receivers	81
6.7	Further Transducer and Coupler Principles	85
7	The Wave Equation in Fluids	87
7.1	Derivation of the One-Dimensional Wave Equation	89
7.2	Three-Dimensional Wave Equation in <i>Cartesian</i> Coordinates ..	94
7.3	Solutions of the Wave Equation	95
7.4	Field Impedance and Power Transport in Plane Waves	96
7.5	Transmission-Line Equations and Reflectance	97
7.6	The Acoustic Measuring Tube	99
8	Horns and Stepped Ducts	103
8.1	<i>Webster's</i> Differential Equation – the Horn Equation	104
8.2	Conical Horns	105
8.3	Exponential Horns	107
8.4	Radiation Impedances and Sound Radiation	110
8.5	Steps in the Area Function	111
8.6	Stepped Ducts	113
9	Spherical Sound Sources and Line Arrays	117
9.1	Spherical Sound Sources of 0 th Order	118
9.2	Spherical Sound Sources of 1 st Order	122
9.3	Higher-Order Spherical Sound Sources	124
9.4	Line Arrays of Monopoles	125
9.5	Analogy to <i>Fourier</i> Transforms as Used in Signal Theory	127
9.6	Directional Equivalence of Sound Emitters and Receivers	130

10	Piston Membranes, Diffraction and Scattering	133
10.1	The <i>Rayleigh</i> Integral	134
10.2	<i>Fraunhofer's</i> Approximation	135
10.3	The Far Field of Piston Membranes	136
10.4	The Near Field of Piston Membranes	138
10.5	General Remarks on Diffraction and Scattering	142
11	Dissipation, Reflection, Refraction, and Absorption	145
11.1	Dissipation During Sound Propagation in Air	147
11.2	Sound Propagation in Porous Media	148
11.3	Reflection and Refraction	151
11.4	Wall Impedance and Degree of Absorption	152
11.5	Porous Absorbers	155
11.6	Resonance Absorbers	158
12	Geometric Acoustics and Diffuse Sound Fields	161
12.1	Mirror Sound Sources and Ray Tracing	162
12.2	Flutter Echoes	165
12.3	Impulse Responses of Rectangular Rooms	167
12.4	Diffuse Sound Fields	169
12.5	Reverberation-Time Formulae	172
12.6	Application of Diffuse Sound Fields	173
13	Isolation of Air- and Structure-Borne Sound	177
13.1	Sound in Solids – Structure-Borne Sound	177
13.2	Radiation of Airborne Sound by Bending Waves	179
13.3	Sound-Transmission Loss of Single-Leaf Walls	181
13.4	Sound-Transmission Loss of Double-Leaf Walls	184
13.5	The Weighted Sound-Reduction Index	186
13.6	Isolation of Vibrations	189
13.7	Isolation of Floors with Regard to Impact Sounds	192
14	Noise Control – A Survey	195
14.1	Origins of Noise	196
14.2	Radiation of Noise	196
14.3	Noise Reduction as a System Problem	200
14.4	Noise Reduction at the Source	203
14.5	Noise Reduction Along the Propagation Paths	204
14.6	Noise Reduction at the Receiver's End	208
15	Appendices	211
15.1	Complex Notation for Sinusoidal Signals	211
15.2	Complex Notation for Power and Intensity	212
15.3	Supplementary Textbooks for Self Study	214
15.4	Exercises	215
15.5	Letter Symbols, Notations and Units	234
Index		239