1	Soie	or Conci	ete—wix rroportion	1			
	1.1	Theoret	ical Foundation for Past Mix Proportion	2			
		1.1.1	Specific Surface Area Method	2			
		1.1.2	Maximum Density Method	4			
		1.1.3	Weymouth Grap Grading Method	5			
	1.2						
		Concrete					
	1.3	Reasons and Puzzles					
	1.4		ng About Establishing the Modern Concrete				
			oportion Theory	13			
	A.1		•	19			
			Different Opinions	19			
	Refe		•	23			
2	Important Raw Material—Coarse Aggregate			25			
	2.1	Aggregate Varieties and Causes Overview					
	2.2	Effects of Different Rock Aggregate on Performance					
	of Concrete						
		2.2.1	Effects on Strength	30			
		2.2.2	Effects of Rock Mechanical Property on Other				
			Performances of Concrete	32			
	2.3	2.3 Two Different Opinions					
		2.3.1	Different Opinions About Rock Strength				
			Requirement in Specification	32			
		2.3.2	Utilization of Gravel	33			
	References						
3	Core Raw Material—Cement						
	3.1						
			nance	35			
	3.2		ew of Cement Production Process	39			

	3.3	Effect of Modern Cement Production Process on Quality	40				
		of Concrete	40				
	3.4	Where Is the Correct Direction of Cement Production					
		Technology?	43				
	3.5	Ending Words	45				
	Refe	rences	45				
4	Alka	Alkali-Aggregate Reaction, Where Are You?					
	Refe	rences	52				
5	Is A	Is Air-Entraining Agent a Panacea for Solving Frost					
_	Resi	stance Problem?	53				
	5.1	Freeze-Thaw Damage on Engineering	53				
	5.2	World-Recognized Measure for Enhancing Frost					
		Resistance—Adding Air-Entraining Agent	56				
	5.3	Overview of Freeze-Thaw Damage Theory	59				
	5.4	Research on Method and Measure for Enhancing Frost					
		Resistance of Practical Engineering	60				
	5.5	What is the Correct Using Method and Range					
	0.0	of Air-Entraining Agent (AEA)	62				
	5.6	Ending Words	67				
		rences	68				
	KCIC	tenees	00				
6	Bree	ding and False Setting, Which Is Better?	69				
	6.1	Reasons for Breeding	70				
	6.2	Reasons for False Setting	76				
	6.3	Detriment of Breeding and False Setting	81				
	6.4	Prevention Method for Breeding and False Setting	82				
	Refe	rences	83				
7	Fibe	r, When Is Useful?	85				
	7.1	Fate and Experience with Fiber-Reinforced Concrete	85				
	7.2	Experimental Method and Conclusion	86				
	7.3	Reason Analyzing	89				
	7.4	Ending Words	91				
		rences	91				
	KCIC	tenees.	71				
8		Cancer of Modern Concrete—Cracks					
	8.1	General Remarks	93				
	8.2	Cause Analysis	96				
		8.2.1 Fine Questions Which Field Engineers					
		Ara Lingble to Solve	06				

Contents xi

		8.2.2	Seven Problems Which Field Engineers	
			Are Different to Solve	98
		8.2.3	Eleven Problems Which Field Engineers	
			Can Solve	99
	8.3	Catego	ry of Cracks	101
		8.3.1	Dehydration Cracks	101
		8.3.2	Temperature Crack	101
		8.3.3	Drying Shrinkage Crack	102
		8.3.4	Stress Cracks	102
	8.4	Cause,	Detriment, and Prevention of Dehydration Crack	104
		8.4.1	Cause for Dehydration Crack	105
		8.4.2	Harmfulness of Dehydration Crack	105
		8.4.3	Prevention and Cure for Dehydration Crack	106
	Refer	ences		107
9	Eis A	ch Doo	lly Only Advantages?	109
7	9.1		ms Unsolved in the Utilization of Fly Ash	109
	9.1	9.1.1	Problems Unsolved Theoretically	109
		9.1.1	Unsolved Technological Problems in Engineering	110
	9.2		Practical Projects	111
	9.2	9.2.1	The Concrete Surface of a Parking Apron	111
		9.2.1	in South China	111
		9.2.2	The Concrete Surface of a Parking Apron	111
		9.2.2	in North China	114
		0.2.2	Universal Harmless Cracks Phenomena	114
		9.2.3		115
		024	in the Construction of Airport	113
		9.2.4		115
		005	in North China	113
		9.2.5	Floor in a Plant in Southwest China	117
	0.2	9.2.6	Other Cases	
	9.3		ary	121
	Kerer	ences		122
10	Adm	ixtures:	All Medicines Have Their Own Side Effects	123
	10.1	Unders	standing on Negative Effects of Several	
		Main C	Chemical Admixtures of the Author	123
		10.1.1	Water Reducer	123
		10.1.2	Air-Entraining Agent	124
		10.1.3	Expansive Agent	125
		10.1.4	——————————————————————————————————————	125
	10.2		s Quality Accident Cause by Improper Chemical	
		Admix	ture Dosage	126
		10.2.1	Water Reducer	126
		10.2.2	Retarding Agent	127

xii Contents

		10.2.3 Early-Strength Agent	129	
		10.2.4 Others	129	
	10.3	What Is the Correct Using Method of Chemical		
		Admixture?	130	
	10.4	Conclusion	130	
	Refer	ences	131	
11	Fatal	Factor for Durability: Drying Shrinkage	133	
	11.1	Generating Process of Drying Shrinkage Crack	133	
	11.2	Harmfulness of Dehydration Crack	134	
		11.2.1 Drying Shrinkage Crack has Great Effect on Flexural		
		Strength and Directly Threatens Safety of Concrete		
		Structure	137	
		11.2.2 Destroying Structure Directly in Some Individual		
		Severe Regions	139	
		11.2.3 Reducing Frost Resistance and Impermeability		
		of Pavement Concrete in Cold Regions	142	
		11.2.4 Thin-Walled Structure and Reinforced Concrete		
		Structure with Small Protection Layer Direct Impact		
		on Their Durability and Usage Security	142	
		11.2.5 In Partial Regions in the South and North, Drying		
		Shrinkage Crack is also Manifested as a Kind		
		of Shallow and Harmless Crack Which has		
		no Practical Effect on Security and Durability		
		of Engineering	146	
	11.3	Cause for Drying Shrinkage Crack	147	
	11.4	Ending Words		
	Refer	rences	150	
12	Doct	or of Concrete—Self-healing	151	
	12.1	Discovery of Self-curing Phenomenon	151	
	12.2	Cause Analysis	160	
	12.3	Application of Self-curing Principle During Practical		
		Engineering	161	
	12.4	Ending Words	164	
13	High	-Performance Concrete, Really High Performance?	167	
	13.1	Difference Between Normal Concrete		
		and High-Performance Concrete	167	
	13.2	Comparison of Application Effect During Practical		
		Engineering	170	
	13.3	Ending Words	171	
	Refer	ences	172	

Contents

14			Correct Idea for Durability Research?	173
	14.1		for Poorer Durability and Research Mistakes	173
	14.2		Method to Solve Durability Problem	175
	14.3		Words	179
	Refer	ences		179
15	Scien		ndation of Modern Concrete	181
	15.1		ery of the Problem	182
	15.2	Concep	tion of the Second-Period Concrete	185
	15.3	Proposi	ng of the "Three-Stage Hypothesis"	188
	15.4		Analysis	195
	15.5	Scientif	Fic Meaning of Three-Period Theory Toward	
			Concrete	198
	15.6	Ending	Words	200
	Refer	ences		201
16	Sumi	mary Re	port of Experimental Study on Dehydration	
	Crac	k Appea	ring in the Construction of Turpan Civil	
	Airp	ort Ceme	ent Concrete Pavement	203
	16.1	Experir	mental Meaning and Purpose	203
		16.1.1	Experimental Meaning	204
		16.1.2	Experimental Purpose	205
	16.2	Experir	mental Program	206
		16.2.1	Emerging Time, Size, Shape, and Character	
			of Dehydration Crack	206
		16.2.2	Harmfulness of Dehydration Crack	207
		16.2.3	Cause for Generation of Dehydration Crack	209
		16.2.4	Experimental Program	212
		16.2.5	Formation and Labor Division of Institutional	
			Framework	217
	16.3	Experir	mental Process	220
		16.3.1	Preparation of Materials, Crews, and Machines	220
		16.3.2	Concrete Mix Proportion	220
		16.3.3	Process Controlling	223
		16.3.4	Process of Curing and Observing	235
		16.3.5	Experiment on Penetration Speed	238
		16.3.6	Experiment on Water-to-Cement Ratio (W/C)	241
	16.4		mental Summary and Conclusion	244
		16.4.1	Introduction	244
		16.4.2	Summary on Environment Climate Influence	245
		16.4.3	Summary on Raw Material	246
		16.4.4	Summary on Concrete Mix Proportion	249
		16.4.5	Summary on Adding Polyester Fiber	252
		16.4.6	Summary on Map Crack	254

XIII

		Summary on Construction Technology			
		General Conclusions	258		
16.5	Total Requirements for Construction of Concrete Used				
		pan Airport	259		
		Requirements for Construction Preparation	259		
	16.5.2	Controlling of Construction Process	260		
Refer	ence		264		
Appendix	A		265		
Appendix	B		273		
Appendix	C		277		

•