Contents

Session 1: Prospects, Legal Regulation, Perception – Part 1	
Railway Noise Control in Europe: Current Status	1
Novel Legislation for Railway Lines and Motorways in The Netherlands P.H. de Vos	7
Bearable Railway Noise Limits in Europe	13
State-of-the-Art of the Noise Emission of Railway Cars	21
Session 2: Prospects, Legal Regulation, Perception – Part 2	
On Separation of Vehicle Noise for Limit Setting in Future Legislation T. Thron, S. Leth, B. Stegemann	31
Session 2: Wheel and Rail Noise – Part 1	
Estimating the Performance of Wheel Dampers Using Laboratory Methods and a Prediction Tool	39
Estimating the Performance of Rail Dampers Using Laboratory Methods and Software Predictions	47
·	
Experimental and Theoretical Studies on Impact Noise Generation due to Rail Joints	55

An Explicit Integration Finite Element Method for Impact Noise Generation at a Squat	63
Poster Session 1: Prospects, Legal Regulation, Perception/Wheel and Rail Noise/Prediction, Measurements, Monitoring	
Future European Noise Emission Ceilings: Threat or Solution? A Review Based on Swiss and Dutch Ceilings	71
Comparison between Road and Rail Noise Cost per Transported Ton of	
Cargo	79
A Survey of Freight Locomotive Passby Noise Emissions	85
On the Importance of Accuracy of Geographic Model Data for Noise Impact Studies	93
The Efficiency of Noise Reduction Measures on Railway Infrastructure in Normal Operating Conditions - NOVIBRAIL	101
Characterizing Wheel Flat Impact Noise with an Efficient Time Domain Model	109
Study on the Sound Radiation Directivity of a Railway Wheel and the Relationship between Directivity and Mode Shape	117
Empirical Modeling of Railway Aerodynamic Noise Using One Microphone Pass-By Recording	125
Localizing Noise Sources on a Rail Vehicle during Pass-By	133
Experimental Characterization of the Vibro-Acoustic Behaviour of a Switch	141
B. Faure, E. Bongini, A. Renoncourt, A. Pouzet	1-71

ΙX

Experimental Comparison of Maximum Length Sequence (MLS) and Impact Hammer Methods to Evaluate Vibration Transfer Functions in	
Soil	149
sonRAIL Web Tool – A New Web Application of the Swiss Method on Railway Noise Calculation Released in 2013	157
Concept for Measuring Aeroacoustic Noise Transmission in Trains Derived from Experience Gained in Aircraft Testing	165
Session 3: Wheel and Rail Noise – Part 2	
Innovative Measures for Reducing Noise Radiation from Track	173
Innovative Noise Mitigation Measures in the Framework of "Konjunkturprogramm II" in Germany	181
Session 3: Prediction, Measurements, Monitoring – Part 1	
Indirect Method of Rail Roughness Measurement – VUKV Implementation and Initial Results	189
Background for a New Standard on Pass-By Measurement of Combined Roughness, Track Decay Rate and Vibroacoustic Transfer Functions	197
Monitoring Rail Condition Based on Sound and Vibration Sensors Installed on an Operational Train	205
Session 4: Prediction, Measurements, Monitoring – Part 2	
Transposition of Noise Type Test Data for Tracks and Vehicles	213
Virtual Testing within the TSI Noise: How to Introduce Numerical Simulation into a Certification Process?	221
A Study of the Measurement Technology of Noise Sources of High-Speed Trains	229

Determination of Insertion Losses for Vibration Mitigation Measures in Track by Artificial Vibration Excitation	237
The Prediction of Vibration Transfer for Railway Induced Ground Vibration	245
Session 5: Ground-Borne Vibration – Part 1	
Invited Paper: Ground-Borne Vibration due to Railway Traffic: A Review of Excitation Mechanisms, Prediction Methods and Mitigation Measures	253
G. Lombaert, G. Degrande, S. François, D.J. Thompson	
Prediction of Railway Induced Vibration and Ground Borne Noise Exposure in Building and Associated Annoyance	289
Attenuation of Railway Noise and Vibration in Two Concrete Frame Multi-storey Buildings D.E.J. Lurcock, D.J. Thompson, O.G. Bewes	297
Session 6: Ground-Borne Vibration – Part 2	
Developing a Good Practice Guide on the Evaluation of Human Response to Vibration from Railways in Residential Environments	305
Vibration Control at Sound Transit	313
Recent Developments in the Pipe-in-Pipe Model for Underground-Railway Vibration Predictions	321
Prediction of Railway-Induced Ground Vibrations: The Use of Minimal Coordinate Method for Vehicle Modelling	329
Poster Session 2: Interior Noise, Sound Barrier/Grinding, Corrugation, Roughness/Resilient Track Forms	
Transfer Path Analysis on a Siemens Combino-Plus Tram in Almada – Seixal (Lisbon)	337

Contents	ΧI
Characteristics of Sound Insulation and Insertion Loss of Different Deloading Sound Barriers for High-Speed Railways	345
Optimizing Capacity of Railroad Yards within Noise Limits Using a Dynamic Noise Model	353
Modeling of Wheel-Track Interaction with Rail Vibration Damper and Its Application for Suppressing Short Pitch Rail Corrugation	361
Investigating the Effects of a Network-Wide Rail Grinding Strategy on Wayside Noise Levels	369
Acoustic and Dynamic Characteristics of a Complex Urban Turnout Using Fibre-Reinforced Foamed Urethane (FFU) Bearers	377
Ensuring Acceptable Vibration Levels in Listed Buildings by Means of Precise Vibration Measurements and Highly-Efficient Floating Slab Track	385
An Assessment of the Effectiveness of Replacing Slab Track to Control Groundborne Noise and Vibration in Buildings above an Existing Railway Tunnel	393
Mitigation Measures against Vibration for Ballasted Tracks – Optimisation of Sleepers, Sleeper Pads and the Substructure by Combined Finite-Element Boundary-Element Calculations	401
Session 7: Squeal Noise, Structure-Borne Noise	
Innovative Measures for Reducing Noise Radiation from Steel Railway Bridges	409
Modelling of Railway Curve Squeal Including Effects of Wheel Rotation A. Pieringer, L. Baeza, W. Kropp	417
FASTSIM with Falling Friction and Friction Memory	425
Towards an Engineering Model for Curve Squeal	433

An Investigation of the Influence of Track Dynamics on Curve Noise J. Jiang, I. Ying, D. Hanson, D.C. Anderson	441
Field Trials of Gauge Face Lubrication and Top-of-Rail Friction Modification for Curve Noise Mitigation	449
Session 8: High-Speed Trains, Aerodynamic Noise – Part 1	
Invited Paper: Railway Noise Generated by High-Speed Trains F. Poisson	457
Component-Based Model for Aerodynamic Noise of High-Speed Trains E. Latorre Iglesias, D.J. Thompson, M.G. Smith	481
Analysis of Aerodynamic and Aeroacoustic Behaviour of a Simplified High-Speed Train Bogie J.Y. Zhu, Z.W. Hu, D.J. Thompson	489
Derivation of Sound Emission Source Terms for High Speed Trains Running at Speeds in Excess of 300 km/h	497
Session 9: High-Speed Trains, Aerodynamic Noise – Part 2	
Mastering Micro-Pressure Wave Effects at the Katzenbergtunnel – Design of Measures, Prediction of Efficiency and Full-Scale Test Verification	505
Aerodynamic Noise Reduction of a Pantograph Panhead by Applying a Flow Control Method	515
Session 9: Ground-Borne Vibration – Part 3	
Reduction of Train Induced Ground Vibration by Vehicle Design	523
RIVAS – Mitigation Measures on Vehicles (WP5); Experimental Analysis of SBB Ground Vibration Measurements and Vehicle Data	531
Stiff Wave Barriers for the Mitigation of Railway Induced Vibrations P. Coulier, A. Dijckmans, J. Jiang, D.J. Thompson, G. Degrande, G. Lombaert	539

Poster Session 3: Ground-Borne Vibration/High-Speed Trains, Aerodynamic Noise/Squeal Noise, Structure-Borne Noise	
Ground-Borne Vibration Mitigation Measures for Turnouts: State-of-the-Art and Field Tests	547
Reducing Railway Induced Ground-Borne Vibration by Using Trenches and Buried Soft Barriers	555
Pantograph Area Noise and Vibration Transmission Characteristics and Interior Noise Reduction Method of High-Speed Trains	563
Micro-Pressure Wave Emissions from German High-Speed Railway Tunnels – An Approved Method for Prediction and Acoustic Assessment C. Gerbig, M. Hieke	57 1
Three Noise Mitigation Measures for Steel Railway Bridges	579
The Mechanisms of Curve Squeal	587
Proposals for Improved Measurement Methods for Curve Squeal and Braking Noise	595
Curve Squeal in the Presence of Two Wheel/Rail Contact Points	603
Session 10: Resilient Track Forms	
A Review of Measurement Data on the Performance of a Resilient Track Form as a Mitigation Measure for Ground-Borne Noise	61
Challenges in the Design and Fabrication of Elastomeric Springs for Floating Slab Tracks	619
Vibration Mitigation by Innovative Low Stiffness Rail Fastening Systems	
for Ballasted Track	627

Control of Railway Induced Ground Vibrations: Influence of Excitation Mechanisms on the Efficiency of Resilient Track Layers	635
Session 11: Grinding, Corrugation, Roughness	
Measurement of Long Wavelength Irregularities on Rails	643
Statistical Description of Wheel Roughness	651
Rail Corrugation Growth on Curves – Measurements, Modelling and Mitigation	659
Effects of Track Stiffness and Tuned Rail Damper on Rail Roughness Growth and Rail Vibration Levels on Metro System	667
Session 11: Interior Noise, Sound Barrier – Part 1	
Prediction of Acoustical Wall Pressure Levels of Rolling Stock Vehicles A. Bistagnino, A. Vallespín, J. Sapena	675
Session 12: Interior Noise, Sound Barrier – Part 2	
Study on Effective Sound Barriers for High Speed Trains	683
Study on Abnormal Interior Noise of High-Speed Trains	691
Interior Noise Prediction of High-Speed Train Based on Hybrid FE-SEA Method	699
Attractive Train Interiors: Minimizing Annoying Sound and Vibration U. Orrenius, U. Carlsson	707
Author Index	715